Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/q1fv_5.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:39:31 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include q1f.h */ | |
29 | |
30 /* | |
31 * This function contains 100 FP additions, 95 FP multiplications, | |
32 * (or, 55 additions, 50 multiplications, 45 fused multiply/add), | |
33 * 69 stack variables, 4 constants, and 50 memory accesses | |
34 */ | |
35 #include "q1f.h" | |
36 | |
37 static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 { | |
44 INT m; | |
45 R *x; | |
46 x = ri; | |
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) { | |
48 V Te, T1w, Ty, TS, TW, Tb, T1t, Tv, T1g, T1c, TP, TV, T1f, T19, TY; | |
49 V TX; | |
50 { | |
51 V T1, T1j, Tl, Ti, Ta, T8, T1A, T1q, T1s, T9, TF, T1r, TZ, TR, TL; | |
52 V TC, Ts, Tu, TQ, TI, T15, T1b, T10, T11, Tt; | |
53 { | |
54 V T1n, T1o, T1k, T1l, T7, Td, T4, Tc; | |
55 { | |
56 V T5, T6, T2, T3; | |
57 T1 = LD(&(x[0]), ms, &(x[0])); | |
58 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
59 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
60 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
61 T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
62 T1j = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)])); | |
63 T1n = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)])); | |
64 T1o = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
65 T1k = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
66 T1l = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)])); | |
67 T7 = VADD(T5, T6); | |
68 Td = VSUB(T5, T6); | |
69 T4 = VADD(T2, T3); | |
70 Tc = VSUB(T2, T3); | |
71 } | |
72 { | |
73 V Tm, Tn, Tr, Tx, T1v, T1p; | |
74 Tl = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); | |
75 T1v = VSUB(T1n, T1o); | |
76 T1p = VADD(T1n, T1o); | |
77 { | |
78 V T1u, T1m, Tp, Tq; | |
79 T1u = VSUB(T1k, T1l); | |
80 T1m = VADD(T1k, T1l); | |
81 Tp = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); | |
82 Ti = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td)); | |
83 Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc)); | |
84 Ta = VSUB(T4, T7); | |
85 T8 = VADD(T4, T7); | |
86 Tq = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
87 T1w = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1v, T1u)); | |
88 T1A = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1u, T1v)); | |
89 T1q = VADD(T1m, T1p); | |
90 T1s = VSUB(T1m, T1p); | |
91 Tm = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
92 T9 = VFNMS(LDK(KP250000000), T8, T1); | |
93 Tn = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)])); | |
94 Tr = VADD(Tp, Tq); | |
95 Tx = VSUB(Tp, Tq); | |
96 } | |
97 { | |
98 V TJ, TK, TG, Tw, To, TH, T13, T14; | |
99 TF = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); | |
100 T1r = VFNMS(LDK(KP250000000), T1q, T1j); | |
101 TJ = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); | |
102 TK = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
103 TG = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
104 Tw = VSUB(Tm, Tn); | |
105 To = VADD(Tm, Tn); | |
106 TH = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)])); | |
107 TZ = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); | |
108 T13 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); | |
109 T14 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
110 TR = VSUB(TJ, TK); | |
111 TL = VADD(TJ, TK); | |
112 Ty = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tx, Tw)); | |
113 TC = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tw, Tx)); | |
114 Ts = VADD(To, Tr); | |
115 Tu = VSUB(To, Tr); | |
116 TQ = VSUB(TG, TH); | |
117 TI = VADD(TG, TH); | |
118 T15 = VADD(T13, T14); | |
119 T1b = VSUB(T13, T14); | |
120 T10 = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
121 T11 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)])); | |
122 Tt = VFNMS(LDK(KP250000000), Ts, Tl); | |
123 } | |
124 } | |
125 } | |
126 { | |
127 V TO, T12, T1a, Th, T1z, TN, TM, T18, T17; | |
128 ST(&(x[0]), VADD(T1, T8), ms, &(x[0])); | |
129 TS = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TR, TQ)); | |
130 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TQ, TR)); | |
131 TM = VADD(TI, TL); | |
132 TO = VSUB(TI, TL); | |
133 ST(&(x[WS(rs, 4)]), VADD(T1j, T1q), ms, &(x[0])); | |
134 T12 = VADD(T10, T11); | |
135 T1a = VSUB(T10, T11); | |
136 ST(&(x[WS(rs, 1)]), VADD(Tl, Ts), ms, &(x[WS(rs, 1)])); | |
137 Th = VFNMS(LDK(KP559016994), Ta, T9); | |
138 Tb = VFMA(LDK(KP559016994), Ta, T9); | |
139 T1t = VFMA(LDK(KP559016994), T1s, T1r); | |
140 T1z = VFNMS(LDK(KP559016994), T1s, T1r); | |
141 ST(&(x[WS(rs, 2)]), VADD(TF, TM), ms, &(x[0])); | |
142 TN = VFNMS(LDK(KP250000000), TM, TF); | |
143 { | |
144 V T16, Tk, Tj, T1C, T1B, TD, TE, TB; | |
145 TB = VFNMS(LDK(KP559016994), Tu, Tt); | |
146 Tv = VFMA(LDK(KP559016994), Tu, Tt); | |
147 T1g = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1a, T1b)); | |
148 T1c = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1b, T1a)); | |
149 T18 = VSUB(T12, T15); | |
150 T16 = VADD(T12, T15); | |
151 Tk = BYTWJ(&(W[TWVL * 4]), VFNMSI(Ti, Th)); | |
152 Tj = BYTWJ(&(W[TWVL * 2]), VFMAI(Ti, Th)); | |
153 T1C = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1A, T1z)); | |
154 T1B = BYTWJ(&(W[TWVL * 2]), VFMAI(T1A, T1z)); | |
155 TD = BYTWJ(&(W[TWVL * 2]), VFMAI(TC, TB)); | |
156 TE = BYTWJ(&(W[TWVL * 4]), VFNMSI(TC, TB)); | |
157 ST(&(x[WS(rs, 3)]), VADD(TZ, T16), ms, &(x[WS(rs, 1)])); | |
158 T17 = VFNMS(LDK(KP250000000), T16, TZ); | |
159 ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)])); | |
160 ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)])); | |
161 ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)])); | |
162 ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)])); | |
163 ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
164 ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
165 } | |
166 TP = VFMA(LDK(KP559016994), TO, TN); | |
167 TV = VFNMS(LDK(KP559016994), TO, TN); | |
168 T1f = VFNMS(LDK(KP559016994), T18, T17); | |
169 T19 = VFMA(LDK(KP559016994), T18, T17); | |
170 } | |
171 } | |
172 TY = BYTWJ(&(W[TWVL * 4]), VFNMSI(TW, TV)); | |
173 TX = BYTWJ(&(W[TWVL * 2]), VFMAI(TW, TV)); | |
174 { | |
175 V T1i, T1h, TU, TT; | |
176 T1i = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1g, T1f)); | |
177 T1h = BYTWJ(&(W[TWVL * 2]), VFMAI(T1g, T1f)); | |
178 TU = BYTWJ(&(W[TWVL * 6]), VFMAI(TS, TP)); | |
179 TT = BYTWJ(&(W[0]), VFNMSI(TS, TP)); | |
180 { | |
181 V Tg, Tf, TA, Tz; | |
182 Tg = BYTWJ(&(W[TWVL * 6]), VFMAI(Te, Tb)); | |
183 Tf = BYTWJ(&(W[0]), VFNMSI(Te, Tb)); | |
184 TA = BYTWJ(&(W[TWVL * 6]), VFMAI(Ty, Tv)); | |
185 Tz = BYTWJ(&(W[0]), VFNMSI(Ty, Tv)); | |
186 { | |
187 V T1e, T1d, T1y, T1x; | |
188 T1e = BYTWJ(&(W[TWVL * 6]), VFMAI(T1c, T19)); | |
189 T1d = BYTWJ(&(W[0]), VFNMSI(T1c, T19)); | |
190 T1y = BYTWJ(&(W[TWVL * 6]), VFMAI(T1w, T1t)); | |
191 T1x = BYTWJ(&(W[0]), VFNMSI(T1w, T1t)); | |
192 ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)])); | |
193 ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)])); | |
194 ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
195 ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
196 ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)])); | |
197 ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)])); | |
198 ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)])); | |
199 ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)])); | |
200 ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
201 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
202 ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
203 ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
204 ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)])); | |
205 ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)])); | |
206 } | |
207 } | |
208 } | |
209 } | |
210 } | |
211 VLEAVE(); | |
212 } | |
213 | |
214 static const tw_instr twinstr[] = { | |
215 VTW(0, 1), | |
216 VTW(0, 2), | |
217 VTW(0, 3), | |
218 VTW(0, 4), | |
219 {TW_NEXT, VL, 0} | |
220 }; | |
221 | |
222 static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, {55, 50, 45, 0}, 0, 0, 0 }; | |
223 | |
224 void XSIMD(codelet_q1fv_5) (planner *p) { | |
225 X(kdft_difsq_register) (p, q1fv_5, &desc); | |
226 } | |
227 #else /* HAVE_FMA */ | |
228 | |
229 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include q1f.h */ | |
230 | |
231 /* | |
232 * This function contains 100 FP additions, 70 FP multiplications, | |
233 * (or, 85 additions, 55 multiplications, 15 fused multiply/add), | |
234 * 44 stack variables, 4 constants, and 50 memory accesses | |
235 */ | |
236 #include "q1f.h" | |
237 | |
238 static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
239 { | |
240 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
241 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
242 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
243 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
244 { | |
245 INT m; | |
246 R *x; | |
247 x = ri; | |
248 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) { | |
249 V T8, T7, Th, Te, T9, Ta, T1q, T1p, T1z, T1w, T1r, T1s, Ts, Tr, TB; | |
250 V Ty, Tt, Tu, TM, TL, TV, TS, TN, TO, T16, T15, T1f, T1c, T17, T18; | |
251 { | |
252 V T6, Td, T3, Tc; | |
253 T8 = LD(&(x[0]), ms, &(x[0])); | |
254 { | |
255 V T4, T5, T1, T2; | |
256 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
257 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
258 T6 = VADD(T4, T5); | |
259 Td = VSUB(T4, T5); | |
260 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
261 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
262 T3 = VADD(T1, T2); | |
263 Tc = VSUB(T1, T2); | |
264 } | |
265 T7 = VMUL(LDK(KP559016994), VSUB(T3, T6)); | |
266 Th = VBYI(VFNMS(LDK(KP587785252), Tc, VMUL(LDK(KP951056516), Td))); | |
267 Te = VBYI(VFMA(LDK(KP951056516), Tc, VMUL(LDK(KP587785252), Td))); | |
268 T9 = VADD(T3, T6); | |
269 Ta = VFNMS(LDK(KP250000000), T9, T8); | |
270 } | |
271 { | |
272 V T1o, T1v, T1l, T1u; | |
273 T1q = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)])); | |
274 { | |
275 V T1m, T1n, T1j, T1k; | |
276 T1m = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)])); | |
277 T1n = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
278 T1o = VADD(T1m, T1n); | |
279 T1v = VSUB(T1m, T1n); | |
280 T1j = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
281 T1k = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)])); | |
282 T1l = VADD(T1j, T1k); | |
283 T1u = VSUB(T1j, T1k); | |
284 } | |
285 T1p = VMUL(LDK(KP559016994), VSUB(T1l, T1o)); | |
286 T1z = VBYI(VFNMS(LDK(KP587785252), T1u, VMUL(LDK(KP951056516), T1v))); | |
287 T1w = VBYI(VFMA(LDK(KP951056516), T1u, VMUL(LDK(KP587785252), T1v))); | |
288 T1r = VADD(T1l, T1o); | |
289 T1s = VFNMS(LDK(KP250000000), T1r, T1q); | |
290 } | |
291 { | |
292 V Tq, Tx, Tn, Tw; | |
293 Ts = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); | |
294 { | |
295 V To, Tp, Tl, Tm; | |
296 To = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); | |
297 Tp = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
298 Tq = VADD(To, Tp); | |
299 Tx = VSUB(To, Tp); | |
300 Tl = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
301 Tm = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)])); | |
302 Tn = VADD(Tl, Tm); | |
303 Tw = VSUB(Tl, Tm); | |
304 } | |
305 Tr = VMUL(LDK(KP559016994), VSUB(Tn, Tq)); | |
306 TB = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tx))); | |
307 Ty = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tx))); | |
308 Tt = VADD(Tn, Tq); | |
309 Tu = VFNMS(LDK(KP250000000), Tt, Ts); | |
310 } | |
311 { | |
312 V TK, TR, TH, TQ; | |
313 TM = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); | |
314 { | |
315 V TI, TJ, TF, TG; | |
316 TI = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); | |
317 TJ = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
318 TK = VADD(TI, TJ); | |
319 TR = VSUB(TI, TJ); | |
320 TF = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
321 TG = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)])); | |
322 TH = VADD(TF, TG); | |
323 TQ = VSUB(TF, TG); | |
324 } | |
325 TL = VMUL(LDK(KP559016994), VSUB(TH, TK)); | |
326 TV = VBYI(VFNMS(LDK(KP587785252), TQ, VMUL(LDK(KP951056516), TR))); | |
327 TS = VBYI(VFMA(LDK(KP951056516), TQ, VMUL(LDK(KP587785252), TR))); | |
328 TN = VADD(TH, TK); | |
329 TO = VFNMS(LDK(KP250000000), TN, TM); | |
330 } | |
331 { | |
332 V T14, T1b, T11, T1a; | |
333 T16 = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); | |
334 { | |
335 V T12, T13, TZ, T10; | |
336 T12 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); | |
337 T13 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
338 T14 = VADD(T12, T13); | |
339 T1b = VSUB(T12, T13); | |
340 TZ = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
341 T10 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)])); | |
342 T11 = VADD(TZ, T10); | |
343 T1a = VSUB(TZ, T10); | |
344 } | |
345 T15 = VMUL(LDK(KP559016994), VSUB(T11, T14)); | |
346 T1f = VBYI(VFNMS(LDK(KP587785252), T1a, VMUL(LDK(KP951056516), T1b))); | |
347 T1c = VBYI(VFMA(LDK(KP951056516), T1a, VMUL(LDK(KP587785252), T1b))); | |
348 T17 = VADD(T11, T14); | |
349 T18 = VFNMS(LDK(KP250000000), T17, T16); | |
350 } | |
351 ST(&(x[0]), VADD(T8, T9), ms, &(x[0])); | |
352 ST(&(x[WS(rs, 4)]), VADD(T1q, T1r), ms, &(x[0])); | |
353 ST(&(x[WS(rs, 2)]), VADD(TM, TN), ms, &(x[0])); | |
354 ST(&(x[WS(rs, 3)]), VADD(T16, T17), ms, &(x[WS(rs, 1)])); | |
355 ST(&(x[WS(rs, 1)]), VADD(Ts, Tt), ms, &(x[WS(rs, 1)])); | |
356 { | |
357 V Tj, Tk, Ti, T1B, T1C, T1A; | |
358 Ti = VSUB(Ta, T7); | |
359 Tj = BYTWJ(&(W[TWVL * 2]), VADD(Th, Ti)); | |
360 Tk = BYTWJ(&(W[TWVL * 4]), VSUB(Ti, Th)); | |
361 ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)])); | |
362 ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)])); | |
363 T1A = VSUB(T1s, T1p); | |
364 T1B = BYTWJ(&(W[TWVL * 2]), VADD(T1z, T1A)); | |
365 T1C = BYTWJ(&(W[TWVL * 4]), VSUB(T1A, T1z)); | |
366 ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)])); | |
367 ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)])); | |
368 } | |
369 { | |
370 V T1h, T1i, T1g, TD, TE, TC; | |
371 T1g = VSUB(T18, T15); | |
372 T1h = BYTWJ(&(W[TWVL * 2]), VADD(T1f, T1g)); | |
373 T1i = BYTWJ(&(W[TWVL * 4]), VSUB(T1g, T1f)); | |
374 ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
375 ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
376 TC = VSUB(Tu, Tr); | |
377 TD = BYTWJ(&(W[TWVL * 2]), VADD(TB, TC)); | |
378 TE = BYTWJ(&(W[TWVL * 4]), VSUB(TC, TB)); | |
379 ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
380 ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
381 } | |
382 { | |
383 V TX, TY, TW, TT, TU, TP; | |
384 TW = VSUB(TO, TL); | |
385 TX = BYTWJ(&(W[TWVL * 2]), VADD(TV, TW)); | |
386 TY = BYTWJ(&(W[TWVL * 4]), VSUB(TW, TV)); | |
387 ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)])); | |
388 ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)])); | |
389 TP = VADD(TL, TO); | |
390 TT = BYTWJ(&(W[0]), VSUB(TP, TS)); | |
391 TU = BYTWJ(&(W[TWVL * 6]), VADD(TS, TP)); | |
392 ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)])); | |
393 ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)])); | |
394 } | |
395 { | |
396 V Tf, Tg, Tb, Tz, TA, Tv; | |
397 Tb = VADD(T7, Ta); | |
398 Tf = BYTWJ(&(W[0]), VSUB(Tb, Te)); | |
399 Tg = BYTWJ(&(W[TWVL * 6]), VADD(Te, Tb)); | |
400 ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)])); | |
401 ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)])); | |
402 Tv = VADD(Tr, Tu); | |
403 Tz = BYTWJ(&(W[0]), VSUB(Tv, Ty)); | |
404 TA = BYTWJ(&(W[TWVL * 6]), VADD(Ty, Tv)); | |
405 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
406 ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
407 } | |
408 { | |
409 V T1d, T1e, T19, T1x, T1y, T1t; | |
410 T19 = VADD(T15, T18); | |
411 T1d = BYTWJ(&(W[0]), VSUB(T19, T1c)); | |
412 T1e = BYTWJ(&(W[TWVL * 6]), VADD(T1c, T19)); | |
413 ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
414 ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
415 T1t = VADD(T1p, T1s); | |
416 T1x = BYTWJ(&(W[0]), VSUB(T1t, T1w)); | |
417 T1y = BYTWJ(&(W[TWVL * 6]), VADD(T1w, T1t)); | |
418 ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)])); | |
419 ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)])); | |
420 } | |
421 } | |
422 } | |
423 VLEAVE(); | |
424 } | |
425 | |
426 static const tw_instr twinstr[] = { | |
427 VTW(0, 1), | |
428 VTW(0, 2), | |
429 VTW(0, 3), | |
430 VTW(0, 4), | |
431 {TW_NEXT, VL, 0} | |
432 }; | |
433 | |
434 static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, {85, 55, 15, 0}, 0, 0, 0 }; | |
435 | |
436 void XSIMD(codelet_q1fv_5) (planner *p) { | |
437 X(kdft_difsq_register) (p, q1fv_5, &desc); | |
438 } | |
439 #endif /* HAVE_FMA */ |