Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/n2fv_16.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/n2fv_16.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,412 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:37:23 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n2fv_16 -with-ostride 2 -include n2f.h -store-multiple 2 */ + +/* + * This function contains 72 FP additions, 34 FP multiplications, + * (or, 38 additions, 0 multiplications, 34 fused multiply/add), + * 62 stack variables, 3 constants, and 40 memory accesses + */ +#include "n2f.h" + +static void n2fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP923879532, +0.923879532511286756128183189396788286822416626); + DVK(KP414213562, +0.414213562373095048801688724209698078569671875); + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT i; + const R *xi; + R *xo; + xi = ri; + xo = ro; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { + V T7, Tu, TF, TB, T13, TL, TO, TX, TC, Te, TP, Th, TQ, Tk, TW; + V T16; + { + V TH, TU, Tz, Tf, TK, TV, TA, TM, Ta, TN, Td, Tg, Ti, Tj; + { + V T1, T2, T4, T5, To, Tp, Tr, Ts; + T1 = LD(&(xi[0]), ivs, &(xi[0])); + T2 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); + T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + T5 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); + To = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); + Tp = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + Tr = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + Ts = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); + { + V T8, TJ, Tq, TI, Tt, T9, Tb, Tc, T3, T6; + T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + TH = VSUB(T1, T2); + T3 = VADD(T1, T2); + TU = VSUB(T4, T5); + T6 = VADD(T4, T5); + TJ = VSUB(To, Tp); + Tq = VADD(To, Tp); + TI = VSUB(Tr, Ts); + Tt = VADD(Tr, Ts); + T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); + Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); + T7 = VSUB(T3, T6); + Tz = VADD(T3, T6); + Tf = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); + TK = VADD(TI, TJ); + TV = VSUB(TJ, TI); + TA = VADD(Tt, Tq); + Tu = VSUB(Tq, Tt); + TM = VSUB(T8, T9); + Ta = VADD(T8, T9); + TN = VSUB(Tb, Tc); + Td = VADD(Tb, Tc); + Tg = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); + Ti = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + Tj = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); + } + } + TF = VSUB(Tz, TA); + TB = VADD(Tz, TA); + T13 = VFNMS(LDK(KP707106781), TK, TH); + TL = VFMA(LDK(KP707106781), TK, TH); + TO = VFNMS(LDK(KP414213562), TN, TM); + TX = VFMA(LDK(KP414213562), TM, TN); + TC = VADD(Ta, Td); + Te = VSUB(Ta, Td); + TP = VSUB(Tf, Tg); + Th = VADD(Tf, Tg); + TQ = VSUB(Tj, Ti); + Tk = VADD(Ti, Tj); + TW = VFNMS(LDK(KP707106781), TV, TU); + T16 = VFMA(LDK(KP707106781), TV, TU); + } + { + V TY, TR, Tl, TD; + TY = VFMA(LDK(KP414213562), TP, TQ); + TR = VFNMS(LDK(KP414213562), TQ, TP); + Tl = VSUB(Th, Tk); + TD = VADD(Th, Tk); + { + V TS, T17, TZ, T14; + TS = VADD(TO, TR); + T17 = VSUB(TR, TO); + TZ = VSUB(TX, TY); + T14 = VADD(TX, TY); + { + V TE, TG, Tm, Tv; + TE = VADD(TC, TD); + TG = VSUB(TD, TC); + Tm = VADD(Te, Tl); + Tv = VSUB(Tl, Te); + { + V T18, T1a, TT, T11; + T18 = VFNMS(LDK(KP923879532), T17, T16); + T1a = VFMA(LDK(KP923879532), T17, T16); + TT = VFNMS(LDK(KP923879532), TS, TL); + T11 = VFMA(LDK(KP923879532), TS, TL); + { + V T15, T19, T10, T12; + T15 = VFNMS(LDK(KP923879532), T14, T13); + T19 = VFMA(LDK(KP923879532), T14, T13); + T10 = VFNMS(LDK(KP923879532), TZ, TW); + T12 = VFMA(LDK(KP923879532), TZ, TW); + { + V T1b, T1c, T1d, T1e; + T1b = VFMAI(TG, TF); + STM2(&(xo[8]), T1b, ovs, &(xo[0])); + T1c = VFNMSI(TG, TF); + STM2(&(xo[24]), T1c, ovs, &(xo[0])); + T1d = VADD(TB, TE); + STM2(&(xo[0]), T1d, ovs, &(xo[0])); + T1e = VSUB(TB, TE); + STM2(&(xo[16]), T1e, ovs, &(xo[0])); + { + V Tw, Ty, Tn, Tx; + Tw = VFNMS(LDK(KP707106781), Tv, Tu); + Ty = VFMA(LDK(KP707106781), Tv, Tu); + Tn = VFNMS(LDK(KP707106781), Tm, T7); + Tx = VFMA(LDK(KP707106781), Tm, T7); + { + V T1f, T1g, T1h, T1i; + T1f = VFMAI(T1a, T19); + STM2(&(xo[6]), T1f, ovs, &(xo[2])); + T1g = VFNMSI(T1a, T19); + STM2(&(xo[26]), T1g, ovs, &(xo[2])); + STN2(&(xo[24]), T1c, T1g, ovs); + T1h = VFMAI(T18, T15); + STM2(&(xo[22]), T1h, ovs, &(xo[2])); + T1i = VFNMSI(T18, T15); + STM2(&(xo[10]), T1i, ovs, &(xo[2])); + STN2(&(xo[8]), T1b, T1i, ovs); + { + V T1j, T1k, T1l, T1m; + T1j = VFNMSI(T12, T11); + STM2(&(xo[2]), T1j, ovs, &(xo[2])); + STN2(&(xo[0]), T1d, T1j, ovs); + T1k = VFMAI(T12, T11); + STM2(&(xo[30]), T1k, ovs, &(xo[2])); + T1l = VFMAI(T10, TT); + STM2(&(xo[14]), T1l, ovs, &(xo[2])); + T1m = VFNMSI(T10, TT); + STM2(&(xo[18]), T1m, ovs, &(xo[2])); + STN2(&(xo[16]), T1e, T1m, ovs); + { + V T1n, T1o, T1p, T1q; + T1n = VFNMSI(Ty, Tx); + STM2(&(xo[28]), T1n, ovs, &(xo[0])); + STN2(&(xo[28]), T1n, T1k, ovs); + T1o = VFMAI(Ty, Tx); + STM2(&(xo[4]), T1o, ovs, &(xo[0])); + STN2(&(xo[4]), T1o, T1f, ovs); + T1p = VFMAI(Tw, Tn); + STM2(&(xo[20]), T1p, ovs, &(xo[0])); + STN2(&(xo[20]), T1p, T1h, ovs); + T1q = VFNMSI(Tw, Tn); + STM2(&(xo[12]), T1q, ovs, &(xo[0])); + STN2(&(xo[12]), T1q, T1l, ovs); + } + } + } + } + } + } + } + } + } + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 16, XSIMD_STRING("n2fv_16"), {38, 0, 34, 0}, &GENUS, 0, 2, 0, 0 }; + +void XSIMD(codelet_n2fv_16) (planner *p) { + X(kdft_register) (p, n2fv_16, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n2fv_16 -with-ostride 2 -include n2f.h -store-multiple 2 */ + +/* + * This function contains 72 FP additions, 12 FP multiplications, + * (or, 68 additions, 8 multiplications, 4 fused multiply/add), + * 38 stack variables, 3 constants, and 40 memory accesses + */ +#include "n2f.h" + +static void n2fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP923879532, +0.923879532511286756128183189396788286822416626); + DVK(KP382683432, +0.382683432365089771728459984030398866761344562); + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT i; + const R *xi; + R *xo; + xi = ri; + xo = ro; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { + V Tp, T13, Tu, TN, Tm, T14, Tv, TY, T7, T17, Ty, TT, Te, T16, Tx; + V TQ; + { + V Tn, To, TM, Ts, Tt, TL; + Tn = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + To = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); + TM = VADD(Tn, To); + Ts = LD(&(xi[0]), ivs, &(xi[0])); + Tt = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); + TL = VADD(Ts, Tt); + Tp = VSUB(Tn, To); + T13 = VADD(TL, TM); + Tu = VSUB(Ts, Tt); + TN = VSUB(TL, TM); + } + { + V Ti, TW, Tl, TX; + { + V Tg, Th, Tj, Tk; + Tg = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); + Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + Ti = VSUB(Tg, Th); + TW = VADD(Tg, Th); + Tj = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + Tk = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); + Tl = VSUB(Tj, Tk); + TX = VADD(Tj, Tk); + } + Tm = VMUL(LDK(KP707106781), VSUB(Ti, Tl)); + T14 = VADD(TX, TW); + Tv = VMUL(LDK(KP707106781), VADD(Tl, Ti)); + TY = VSUB(TW, TX); + } + { + V T3, TR, T6, TS; + { + V T1, T2, T4, T5; + T1 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); + T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); + T3 = VSUB(T1, T2); + TR = VADD(T1, T2); + T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + T5 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); + T6 = VSUB(T4, T5); + TS = VADD(T4, T5); + } + T7 = VFNMS(LDK(KP923879532), T6, VMUL(LDK(KP382683432), T3)); + T17 = VADD(TR, TS); + Ty = VFMA(LDK(KP923879532), T3, VMUL(LDK(KP382683432), T6)); + TT = VSUB(TR, TS); + } + { + V Ta, TO, Td, TP; + { + V T8, T9, Tb, Tc; + T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); + Ta = VSUB(T8, T9); + TO = VADD(T8, T9); + Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); + Td = VSUB(Tb, Tc); + TP = VADD(Tb, Tc); + } + Te = VFMA(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), Td)); + T16 = VADD(TO, TP); + Tx = VFNMS(LDK(KP382683432), Td, VMUL(LDK(KP923879532), Ta)); + TQ = VSUB(TO, TP); + } + { + V T1b, T1c, T1d, T1e; + { + V T15, T18, T19, T1a; + T15 = VADD(T13, T14); + T18 = VADD(T16, T17); + T1b = VSUB(T15, T18); + STM2(&(xo[16]), T1b, ovs, &(xo[0])); + T1c = VADD(T15, T18); + STM2(&(xo[0]), T1c, ovs, &(xo[0])); + T19 = VSUB(T13, T14); + T1a = VBYI(VSUB(T17, T16)); + T1d = VSUB(T19, T1a); + STM2(&(xo[24]), T1d, ovs, &(xo[0])); + T1e = VADD(T19, T1a); + STM2(&(xo[8]), T1e, ovs, &(xo[0])); + } + { + V T1f, T1g, T1h, T1i; + { + V TV, T11, T10, T12, TU, TZ; + TU = VMUL(LDK(KP707106781), VADD(TQ, TT)); + TV = VADD(TN, TU); + T11 = VSUB(TN, TU); + TZ = VMUL(LDK(KP707106781), VSUB(TT, TQ)); + T10 = VBYI(VADD(TY, TZ)); + T12 = VBYI(VSUB(TZ, TY)); + T1f = VSUB(TV, T10); + STM2(&(xo[28]), T1f, ovs, &(xo[0])); + T1g = VADD(T11, T12); + STM2(&(xo[12]), T1g, ovs, &(xo[0])); + T1h = VADD(TV, T10); + STM2(&(xo[4]), T1h, ovs, &(xo[0])); + T1i = VSUB(T11, T12); + STM2(&(xo[20]), T1i, ovs, &(xo[0])); + } + { + V Tr, TB, TA, TC; + { + V Tf, Tq, Tw, Tz; + Tf = VSUB(T7, Te); + Tq = VSUB(Tm, Tp); + Tr = VBYI(VSUB(Tf, Tq)); + TB = VBYI(VADD(Tq, Tf)); + Tw = VADD(Tu, Tv); + Tz = VADD(Tx, Ty); + TA = VSUB(Tw, Tz); + TC = VADD(Tw, Tz); + } + { + V T1j, T1k, T1l, T1m; + T1j = VADD(Tr, TA); + STM2(&(xo[14]), T1j, ovs, &(xo[2])); + STN2(&(xo[12]), T1g, T1j, ovs); + T1k = VSUB(TC, TB); + STM2(&(xo[30]), T1k, ovs, &(xo[2])); + STN2(&(xo[28]), T1f, T1k, ovs); + T1l = VSUB(TA, Tr); + STM2(&(xo[18]), T1l, ovs, &(xo[2])); + STN2(&(xo[16]), T1b, T1l, ovs); + T1m = VADD(TB, TC); + STM2(&(xo[2]), T1m, ovs, &(xo[2])); + STN2(&(xo[0]), T1c, T1m, ovs); + } + } + { + V TF, TJ, TI, TK; + { + V TD, TE, TG, TH; + TD = VSUB(Tu, Tv); + TE = VADD(Te, T7); + TF = VADD(TD, TE); + TJ = VSUB(TD, TE); + TG = VADD(Tp, Tm); + TH = VSUB(Ty, Tx); + TI = VBYI(VADD(TG, TH)); + TK = VBYI(VSUB(TH, TG)); + } + { + V T1n, T1o, T1p, T1q; + T1n = VSUB(TF, TI); + STM2(&(xo[26]), T1n, ovs, &(xo[2])); + STN2(&(xo[24]), T1d, T1n, ovs); + T1o = VADD(TJ, TK); + STM2(&(xo[10]), T1o, ovs, &(xo[2])); + STN2(&(xo[8]), T1e, T1o, ovs); + T1p = VADD(TF, TI); + STM2(&(xo[6]), T1p, ovs, &(xo[2])); + STN2(&(xo[4]), T1h, T1p, ovs); + T1q = VSUB(TJ, TK); + STM2(&(xo[22]), T1q, ovs, &(xo[2])); + STN2(&(xo[20]), T1i, T1q, ovs); + } + } + } + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 16, XSIMD_STRING("n2fv_16"), {68, 8, 4, 0}, &GENUS, 0, 2, 0, 0 }; + +void XSIMD(codelet_n2fv_16) (planner *p) { + X(kdft_register) (p, n2fv_16, &desc); +} + +#endif /* HAVE_FMA */