Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/n2fv_16.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:37:23 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n2fv_16 -with-ostride 2 -include n2f.h -store-multiple 2 */ | |
29 | |
30 /* | |
31 * This function contains 72 FP additions, 34 FP multiplications, | |
32 * (or, 38 additions, 0 multiplications, 34 fused multiply/add), | |
33 * 62 stack variables, 3 constants, and 40 memory accesses | |
34 */ | |
35 #include "n2f.h" | |
36 | |
37 static void n2fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
42 { | |
43 INT i; | |
44 const R *xi; | |
45 R *xo; | |
46 xi = ri; | |
47 xo = ro; | |
48 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { | |
49 V T7, Tu, TF, TB, T13, TL, TO, TX, TC, Te, TP, Th, TQ, Tk, TW; | |
50 V T16; | |
51 { | |
52 V TH, TU, Tz, Tf, TK, TV, TA, TM, Ta, TN, Td, Tg, Ti, Tj; | |
53 { | |
54 V T1, T2, T4, T5, To, Tp, Tr, Ts; | |
55 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
56 T2 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
57 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
58 T5 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
59 To = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
60 Tp = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
61 Tr = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
62 Ts = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
63 { | |
64 V T8, TJ, Tq, TI, Tt, T9, Tb, Tc, T3, T6; | |
65 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
66 TH = VSUB(T1, T2); | |
67 T3 = VADD(T1, T2); | |
68 TU = VSUB(T4, T5); | |
69 T6 = VADD(T4, T5); | |
70 TJ = VSUB(To, Tp); | |
71 Tq = VADD(To, Tp); | |
72 TI = VSUB(Tr, Ts); | |
73 Tt = VADD(Tr, Ts); | |
74 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
75 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
76 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
77 T7 = VSUB(T3, T6); | |
78 Tz = VADD(T3, T6); | |
79 Tf = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); | |
80 TK = VADD(TI, TJ); | |
81 TV = VSUB(TJ, TI); | |
82 TA = VADD(Tt, Tq); | |
83 Tu = VSUB(Tq, Tt); | |
84 TM = VSUB(T8, T9); | |
85 Ta = VADD(T8, T9); | |
86 TN = VSUB(Tb, Tc); | |
87 Td = VADD(Tb, Tc); | |
88 Tg = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
89 Ti = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
90 Tj = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
91 } | |
92 } | |
93 TF = VSUB(Tz, TA); | |
94 TB = VADD(Tz, TA); | |
95 T13 = VFNMS(LDK(KP707106781), TK, TH); | |
96 TL = VFMA(LDK(KP707106781), TK, TH); | |
97 TO = VFNMS(LDK(KP414213562), TN, TM); | |
98 TX = VFMA(LDK(KP414213562), TM, TN); | |
99 TC = VADD(Ta, Td); | |
100 Te = VSUB(Ta, Td); | |
101 TP = VSUB(Tf, Tg); | |
102 Th = VADD(Tf, Tg); | |
103 TQ = VSUB(Tj, Ti); | |
104 Tk = VADD(Ti, Tj); | |
105 TW = VFNMS(LDK(KP707106781), TV, TU); | |
106 T16 = VFMA(LDK(KP707106781), TV, TU); | |
107 } | |
108 { | |
109 V TY, TR, Tl, TD; | |
110 TY = VFMA(LDK(KP414213562), TP, TQ); | |
111 TR = VFNMS(LDK(KP414213562), TQ, TP); | |
112 Tl = VSUB(Th, Tk); | |
113 TD = VADD(Th, Tk); | |
114 { | |
115 V TS, T17, TZ, T14; | |
116 TS = VADD(TO, TR); | |
117 T17 = VSUB(TR, TO); | |
118 TZ = VSUB(TX, TY); | |
119 T14 = VADD(TX, TY); | |
120 { | |
121 V TE, TG, Tm, Tv; | |
122 TE = VADD(TC, TD); | |
123 TG = VSUB(TD, TC); | |
124 Tm = VADD(Te, Tl); | |
125 Tv = VSUB(Tl, Te); | |
126 { | |
127 V T18, T1a, TT, T11; | |
128 T18 = VFNMS(LDK(KP923879532), T17, T16); | |
129 T1a = VFMA(LDK(KP923879532), T17, T16); | |
130 TT = VFNMS(LDK(KP923879532), TS, TL); | |
131 T11 = VFMA(LDK(KP923879532), TS, TL); | |
132 { | |
133 V T15, T19, T10, T12; | |
134 T15 = VFNMS(LDK(KP923879532), T14, T13); | |
135 T19 = VFMA(LDK(KP923879532), T14, T13); | |
136 T10 = VFNMS(LDK(KP923879532), TZ, TW); | |
137 T12 = VFMA(LDK(KP923879532), TZ, TW); | |
138 { | |
139 V T1b, T1c, T1d, T1e; | |
140 T1b = VFMAI(TG, TF); | |
141 STM2(&(xo[8]), T1b, ovs, &(xo[0])); | |
142 T1c = VFNMSI(TG, TF); | |
143 STM2(&(xo[24]), T1c, ovs, &(xo[0])); | |
144 T1d = VADD(TB, TE); | |
145 STM2(&(xo[0]), T1d, ovs, &(xo[0])); | |
146 T1e = VSUB(TB, TE); | |
147 STM2(&(xo[16]), T1e, ovs, &(xo[0])); | |
148 { | |
149 V Tw, Ty, Tn, Tx; | |
150 Tw = VFNMS(LDK(KP707106781), Tv, Tu); | |
151 Ty = VFMA(LDK(KP707106781), Tv, Tu); | |
152 Tn = VFNMS(LDK(KP707106781), Tm, T7); | |
153 Tx = VFMA(LDK(KP707106781), Tm, T7); | |
154 { | |
155 V T1f, T1g, T1h, T1i; | |
156 T1f = VFMAI(T1a, T19); | |
157 STM2(&(xo[6]), T1f, ovs, &(xo[2])); | |
158 T1g = VFNMSI(T1a, T19); | |
159 STM2(&(xo[26]), T1g, ovs, &(xo[2])); | |
160 STN2(&(xo[24]), T1c, T1g, ovs); | |
161 T1h = VFMAI(T18, T15); | |
162 STM2(&(xo[22]), T1h, ovs, &(xo[2])); | |
163 T1i = VFNMSI(T18, T15); | |
164 STM2(&(xo[10]), T1i, ovs, &(xo[2])); | |
165 STN2(&(xo[8]), T1b, T1i, ovs); | |
166 { | |
167 V T1j, T1k, T1l, T1m; | |
168 T1j = VFNMSI(T12, T11); | |
169 STM2(&(xo[2]), T1j, ovs, &(xo[2])); | |
170 STN2(&(xo[0]), T1d, T1j, ovs); | |
171 T1k = VFMAI(T12, T11); | |
172 STM2(&(xo[30]), T1k, ovs, &(xo[2])); | |
173 T1l = VFMAI(T10, TT); | |
174 STM2(&(xo[14]), T1l, ovs, &(xo[2])); | |
175 T1m = VFNMSI(T10, TT); | |
176 STM2(&(xo[18]), T1m, ovs, &(xo[2])); | |
177 STN2(&(xo[16]), T1e, T1m, ovs); | |
178 { | |
179 V T1n, T1o, T1p, T1q; | |
180 T1n = VFNMSI(Ty, Tx); | |
181 STM2(&(xo[28]), T1n, ovs, &(xo[0])); | |
182 STN2(&(xo[28]), T1n, T1k, ovs); | |
183 T1o = VFMAI(Ty, Tx); | |
184 STM2(&(xo[4]), T1o, ovs, &(xo[0])); | |
185 STN2(&(xo[4]), T1o, T1f, ovs); | |
186 T1p = VFMAI(Tw, Tn); | |
187 STM2(&(xo[20]), T1p, ovs, &(xo[0])); | |
188 STN2(&(xo[20]), T1p, T1h, ovs); | |
189 T1q = VFNMSI(Tw, Tn); | |
190 STM2(&(xo[12]), T1q, ovs, &(xo[0])); | |
191 STN2(&(xo[12]), T1q, T1l, ovs); | |
192 } | |
193 } | |
194 } | |
195 } | |
196 } | |
197 } | |
198 } | |
199 } | |
200 } | |
201 } | |
202 } | |
203 } | |
204 VLEAVE(); | |
205 } | |
206 | |
207 static const kdft_desc desc = { 16, XSIMD_STRING("n2fv_16"), {38, 0, 34, 0}, &GENUS, 0, 2, 0, 0 }; | |
208 | |
209 void XSIMD(codelet_n2fv_16) (planner *p) { | |
210 X(kdft_register) (p, n2fv_16, &desc); | |
211 } | |
212 | |
213 #else /* HAVE_FMA */ | |
214 | |
215 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n2fv_16 -with-ostride 2 -include n2f.h -store-multiple 2 */ | |
216 | |
217 /* | |
218 * This function contains 72 FP additions, 12 FP multiplications, | |
219 * (or, 68 additions, 8 multiplications, 4 fused multiply/add), | |
220 * 38 stack variables, 3 constants, and 40 memory accesses | |
221 */ | |
222 #include "n2f.h" | |
223 | |
224 static void n2fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
225 { | |
226 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
227 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
228 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
229 { | |
230 INT i; | |
231 const R *xi; | |
232 R *xo; | |
233 xi = ri; | |
234 xo = ro; | |
235 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { | |
236 V Tp, T13, Tu, TN, Tm, T14, Tv, TY, T7, T17, Ty, TT, Te, T16, Tx; | |
237 V TQ; | |
238 { | |
239 V Tn, To, TM, Ts, Tt, TL; | |
240 Tn = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
241 To = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
242 TM = VADD(Tn, To); | |
243 Ts = LD(&(xi[0]), ivs, &(xi[0])); | |
244 Tt = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
245 TL = VADD(Ts, Tt); | |
246 Tp = VSUB(Tn, To); | |
247 T13 = VADD(TL, TM); | |
248 Tu = VSUB(Ts, Tt); | |
249 TN = VSUB(TL, TM); | |
250 } | |
251 { | |
252 V Ti, TW, Tl, TX; | |
253 { | |
254 V Tg, Th, Tj, Tk; | |
255 Tg = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
256 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
257 Ti = VSUB(Tg, Th); | |
258 TW = VADD(Tg, Th); | |
259 Tj = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
260 Tk = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
261 Tl = VSUB(Tj, Tk); | |
262 TX = VADD(Tj, Tk); | |
263 } | |
264 Tm = VMUL(LDK(KP707106781), VSUB(Ti, Tl)); | |
265 T14 = VADD(TX, TW); | |
266 Tv = VMUL(LDK(KP707106781), VADD(Tl, Ti)); | |
267 TY = VSUB(TW, TX); | |
268 } | |
269 { | |
270 V T3, TR, T6, TS; | |
271 { | |
272 V T1, T2, T4, T5; | |
273 T1 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); | |
274 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
275 T3 = VSUB(T1, T2); | |
276 TR = VADD(T1, T2); | |
277 T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
278 T5 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
279 T6 = VSUB(T4, T5); | |
280 TS = VADD(T4, T5); | |
281 } | |
282 T7 = VFNMS(LDK(KP923879532), T6, VMUL(LDK(KP382683432), T3)); | |
283 T17 = VADD(TR, TS); | |
284 Ty = VFMA(LDK(KP923879532), T3, VMUL(LDK(KP382683432), T6)); | |
285 TT = VSUB(TR, TS); | |
286 } | |
287 { | |
288 V Ta, TO, Td, TP; | |
289 { | |
290 V T8, T9, Tb, Tc; | |
291 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
292 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
293 Ta = VSUB(T8, T9); | |
294 TO = VADD(T8, T9); | |
295 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
296 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
297 Td = VSUB(Tb, Tc); | |
298 TP = VADD(Tb, Tc); | |
299 } | |
300 Te = VFMA(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), Td)); | |
301 T16 = VADD(TO, TP); | |
302 Tx = VFNMS(LDK(KP382683432), Td, VMUL(LDK(KP923879532), Ta)); | |
303 TQ = VSUB(TO, TP); | |
304 } | |
305 { | |
306 V T1b, T1c, T1d, T1e; | |
307 { | |
308 V T15, T18, T19, T1a; | |
309 T15 = VADD(T13, T14); | |
310 T18 = VADD(T16, T17); | |
311 T1b = VSUB(T15, T18); | |
312 STM2(&(xo[16]), T1b, ovs, &(xo[0])); | |
313 T1c = VADD(T15, T18); | |
314 STM2(&(xo[0]), T1c, ovs, &(xo[0])); | |
315 T19 = VSUB(T13, T14); | |
316 T1a = VBYI(VSUB(T17, T16)); | |
317 T1d = VSUB(T19, T1a); | |
318 STM2(&(xo[24]), T1d, ovs, &(xo[0])); | |
319 T1e = VADD(T19, T1a); | |
320 STM2(&(xo[8]), T1e, ovs, &(xo[0])); | |
321 } | |
322 { | |
323 V T1f, T1g, T1h, T1i; | |
324 { | |
325 V TV, T11, T10, T12, TU, TZ; | |
326 TU = VMUL(LDK(KP707106781), VADD(TQ, TT)); | |
327 TV = VADD(TN, TU); | |
328 T11 = VSUB(TN, TU); | |
329 TZ = VMUL(LDK(KP707106781), VSUB(TT, TQ)); | |
330 T10 = VBYI(VADD(TY, TZ)); | |
331 T12 = VBYI(VSUB(TZ, TY)); | |
332 T1f = VSUB(TV, T10); | |
333 STM2(&(xo[28]), T1f, ovs, &(xo[0])); | |
334 T1g = VADD(T11, T12); | |
335 STM2(&(xo[12]), T1g, ovs, &(xo[0])); | |
336 T1h = VADD(TV, T10); | |
337 STM2(&(xo[4]), T1h, ovs, &(xo[0])); | |
338 T1i = VSUB(T11, T12); | |
339 STM2(&(xo[20]), T1i, ovs, &(xo[0])); | |
340 } | |
341 { | |
342 V Tr, TB, TA, TC; | |
343 { | |
344 V Tf, Tq, Tw, Tz; | |
345 Tf = VSUB(T7, Te); | |
346 Tq = VSUB(Tm, Tp); | |
347 Tr = VBYI(VSUB(Tf, Tq)); | |
348 TB = VBYI(VADD(Tq, Tf)); | |
349 Tw = VADD(Tu, Tv); | |
350 Tz = VADD(Tx, Ty); | |
351 TA = VSUB(Tw, Tz); | |
352 TC = VADD(Tw, Tz); | |
353 } | |
354 { | |
355 V T1j, T1k, T1l, T1m; | |
356 T1j = VADD(Tr, TA); | |
357 STM2(&(xo[14]), T1j, ovs, &(xo[2])); | |
358 STN2(&(xo[12]), T1g, T1j, ovs); | |
359 T1k = VSUB(TC, TB); | |
360 STM2(&(xo[30]), T1k, ovs, &(xo[2])); | |
361 STN2(&(xo[28]), T1f, T1k, ovs); | |
362 T1l = VSUB(TA, Tr); | |
363 STM2(&(xo[18]), T1l, ovs, &(xo[2])); | |
364 STN2(&(xo[16]), T1b, T1l, ovs); | |
365 T1m = VADD(TB, TC); | |
366 STM2(&(xo[2]), T1m, ovs, &(xo[2])); | |
367 STN2(&(xo[0]), T1c, T1m, ovs); | |
368 } | |
369 } | |
370 { | |
371 V TF, TJ, TI, TK; | |
372 { | |
373 V TD, TE, TG, TH; | |
374 TD = VSUB(Tu, Tv); | |
375 TE = VADD(Te, T7); | |
376 TF = VADD(TD, TE); | |
377 TJ = VSUB(TD, TE); | |
378 TG = VADD(Tp, Tm); | |
379 TH = VSUB(Ty, Tx); | |
380 TI = VBYI(VADD(TG, TH)); | |
381 TK = VBYI(VSUB(TH, TG)); | |
382 } | |
383 { | |
384 V T1n, T1o, T1p, T1q; | |
385 T1n = VSUB(TF, TI); | |
386 STM2(&(xo[26]), T1n, ovs, &(xo[2])); | |
387 STN2(&(xo[24]), T1d, T1n, ovs); | |
388 T1o = VADD(TJ, TK); | |
389 STM2(&(xo[10]), T1o, ovs, &(xo[2])); | |
390 STN2(&(xo[8]), T1e, T1o, ovs); | |
391 T1p = VADD(TF, TI); | |
392 STM2(&(xo[6]), T1p, ovs, &(xo[2])); | |
393 STN2(&(xo[4]), T1h, T1p, ovs); | |
394 T1q = VSUB(TJ, TK); | |
395 STM2(&(xo[22]), T1q, ovs, &(xo[2])); | |
396 STN2(&(xo[20]), T1i, T1q, ovs); | |
397 } | |
398 } | |
399 } | |
400 } | |
401 } | |
402 } | |
403 VLEAVE(); | |
404 } | |
405 | |
406 static const kdft_desc desc = { 16, XSIMD_STRING("n2fv_16"), {68, 8, 4, 0}, &GENUS, 0, 2, 0, 0 }; | |
407 | |
408 void XSIMD(codelet_n2fv_16) (planner *p) { | |
409 X(kdft_register) (p, n2fv_16, &desc); | |
410 } | |
411 | |
412 #endif /* HAVE_FMA */ |