diff src/fftw-3.3.3/dft/simd/common/n2bv_8.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/simd/common/n2bv_8.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,211 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:37:29 EST 2012 */
+
+#include "codelet-dft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n2bv_8 -with-ostride 2 -include n2b.h -store-multiple 2 */
+
+/*
+ * This function contains 26 FP additions, 10 FP multiplications,
+ * (or, 16 additions, 0 multiplications, 10 fused multiply/add),
+ * 38 stack variables, 1 constants, and 20 memory accesses
+ */
+#include "n2b.h"
+
+static void n2bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT i;
+	  const R *xi;
+	  R *xo;
+	  xi = ii;
+	  xo = io;
+	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
+	       V T1, T2, Tc, Td, T4, T5, T7, T8;
+	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
+	       T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
+	       Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
+	       Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
+	       T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
+	       T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
+	       T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
+	       T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
+	       {
+		    V T3, Tj, Te, Tk, T6, Tm, T9, Tn, Tp, Tl;
+		    T3 = VSUB(T1, T2);
+		    Tj = VADD(T1, T2);
+		    Te = VSUB(Tc, Td);
+		    Tk = VADD(Tc, Td);
+		    T6 = VSUB(T4, T5);
+		    Tm = VADD(T4, T5);
+		    T9 = VSUB(T7, T8);
+		    Tn = VADD(T7, T8);
+		    Tp = VADD(Tj, Tk);
+		    Tl = VSUB(Tj, Tk);
+		    {
+			 V Tq, To, Ta, Tf;
+			 Tq = VADD(Tm, Tn);
+			 To = VSUB(Tm, Tn);
+			 Ta = VADD(T6, T9);
+			 Tf = VSUB(T6, T9);
+			 {
+			      V Tr, Ts, Tt, Tu, Tg, Ti, Tb, Th;
+			      Tr = VFMAI(To, Tl);
+			      STM2(&(xo[4]), Tr, ovs, &(xo[0]));
+			      Ts = VFNMSI(To, Tl);
+			      STM2(&(xo[12]), Ts, ovs, &(xo[0]));
+			      Tt = VADD(Tp, Tq);
+			      STM2(&(xo[0]), Tt, ovs, &(xo[0]));
+			      Tu = VSUB(Tp, Tq);
+			      STM2(&(xo[8]), Tu, ovs, &(xo[0]));
+			      Tg = VFNMS(LDK(KP707106781), Tf, Te);
+			      Ti = VFMA(LDK(KP707106781), Tf, Te);
+			      Tb = VFNMS(LDK(KP707106781), Ta, T3);
+			      Th = VFMA(LDK(KP707106781), Ta, T3);
+			      {
+				   V Tv, Tw, Tx, Ty;
+				   Tv = VFNMSI(Ti, Th);
+				   STM2(&(xo[14]), Tv, ovs, &(xo[2]));
+				   STN2(&(xo[12]), Ts, Tv, ovs);
+				   Tw = VFMAI(Ti, Th);
+				   STM2(&(xo[2]), Tw, ovs, &(xo[2]));
+				   STN2(&(xo[0]), Tt, Tw, ovs);
+				   Tx = VFMAI(Tg, Tb);
+				   STM2(&(xo[10]), Tx, ovs, &(xo[2]));
+				   STN2(&(xo[8]), Tu, Tx, ovs);
+				   Ty = VFNMSI(Tg, Tb);
+				   STM2(&(xo[6]), Ty, ovs, &(xo[2]));
+				   STN2(&(xo[4]), Tr, Ty, ovs);
+			      }
+			 }
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const kdft_desc desc = { 8, XSIMD_STRING("n2bv_8"), {16, 0, 10, 0}, &GENUS, 0, 2, 0, 0 };
+
+void XSIMD(codelet_n2bv_8) (planner *p) {
+     X(kdft_register) (p, n2bv_8, &desc);
+}
+
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n2bv_8 -with-ostride 2 -include n2b.h -store-multiple 2 */
+
+/*
+ * This function contains 26 FP additions, 2 FP multiplications,
+ * (or, 26 additions, 2 multiplications, 0 fused multiply/add),
+ * 24 stack variables, 1 constants, and 20 memory accesses
+ */
+#include "n2b.h"
+
+static void n2bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT i;
+	  const R *xi;
+	  R *xo;
+	  xi = ii;
+	  xo = io;
+	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
+	       V Ta, Tk, Te, Tj, T7, Tn, Tf, Tm, Tr, Tu;
+	       {
+		    V T8, T9, Tc, Td;
+		    T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
+		    T9 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
+		    Ta = VSUB(T8, T9);
+		    Tk = VADD(T8, T9);
+		    Tc = LD(&(xi[0]), ivs, &(xi[0]));
+		    Td = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
+		    Te = VSUB(Tc, Td);
+		    Tj = VADD(Tc, Td);
+		    {
+			 V T1, T2, T3, T4, T5, T6;
+			 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
+			 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
+			 T3 = VSUB(T1, T2);
+			 T4 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
+			 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
+			 T6 = VSUB(T4, T5);
+			 T7 = VMUL(LDK(KP707106781), VSUB(T3, T6));
+			 Tn = VADD(T4, T5);
+			 Tf = VMUL(LDK(KP707106781), VADD(T3, T6));
+			 Tm = VADD(T1, T2);
+		    }
+	       }
+	       {
+		    V Ts, Tb, Tg, Tp, Tq, Tt;
+		    Tb = VBYI(VSUB(T7, Ta));
+		    Tg = VSUB(Te, Tf);
+		    Tr = VADD(Tb, Tg);
+		    STM2(&(xo[6]), Tr, ovs, &(xo[2]));
+		    Ts = VSUB(Tg, Tb);
+		    STM2(&(xo[10]), Ts, ovs, &(xo[2]));
+		    Tp = VADD(Tj, Tk);
+		    Tq = VADD(Tm, Tn);
+		    Tt = VSUB(Tp, Tq);
+		    STM2(&(xo[8]), Tt, ovs, &(xo[0]));
+		    STN2(&(xo[8]), Tt, Ts, ovs);
+		    Tu = VADD(Tp, Tq);
+		    STM2(&(xo[0]), Tu, ovs, &(xo[0]));
+	       }
+	       {
+		    V Tw, Th, Ti, Tv;
+		    Th = VBYI(VADD(Ta, T7));
+		    Ti = VADD(Te, Tf);
+		    Tv = VADD(Th, Ti);
+		    STM2(&(xo[2]), Tv, ovs, &(xo[2]));
+		    STN2(&(xo[0]), Tu, Tv, ovs);
+		    Tw = VSUB(Ti, Th);
+		    STM2(&(xo[14]), Tw, ovs, &(xo[2]));
+		    {
+			 V Tl, To, Tx, Ty;
+			 Tl = VSUB(Tj, Tk);
+			 To = VBYI(VSUB(Tm, Tn));
+			 Tx = VSUB(Tl, To);
+			 STM2(&(xo[12]), Tx, ovs, &(xo[0]));
+			 STN2(&(xo[12]), Tx, Tw, ovs);
+			 Ty = VADD(Tl, To);
+			 STM2(&(xo[4]), Ty, ovs, &(xo[0]));
+			 STN2(&(xo[4]), Ty, Tr, ovs);
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const kdft_desc desc = { 8, XSIMD_STRING("n2bv_8"), {26, 2, 0, 0}, &GENUS, 0, 2, 0, 0 };
+
+void XSIMD(codelet_n2bv_8) (planner *p) {
+     X(kdft_register) (p, n2bv_8, &desc);
+}
+
+#endif				/* HAVE_FMA */