Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/n2bv_8.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:37:29 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n2bv_8 -with-ostride 2 -include n2b.h -store-multiple 2 */ | |
29 | |
30 /* | |
31 * This function contains 26 FP additions, 10 FP multiplications, | |
32 * (or, 16 additions, 0 multiplications, 10 fused multiply/add), | |
33 * 38 stack variables, 1 constants, and 20 memory accesses | |
34 */ | |
35 #include "n2b.h" | |
36 | |
37 static void n2bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 { | |
41 INT i; | |
42 const R *xi; | |
43 R *xo; | |
44 xi = ii; | |
45 xo = io; | |
46 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { | |
47 V T1, T2, Tc, Td, T4, T5, T7, T8; | |
48 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
49 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
50 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
51 Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
52 T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
53 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
54 T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
55 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
56 { | |
57 V T3, Tj, Te, Tk, T6, Tm, T9, Tn, Tp, Tl; | |
58 T3 = VSUB(T1, T2); | |
59 Tj = VADD(T1, T2); | |
60 Te = VSUB(Tc, Td); | |
61 Tk = VADD(Tc, Td); | |
62 T6 = VSUB(T4, T5); | |
63 Tm = VADD(T4, T5); | |
64 T9 = VSUB(T7, T8); | |
65 Tn = VADD(T7, T8); | |
66 Tp = VADD(Tj, Tk); | |
67 Tl = VSUB(Tj, Tk); | |
68 { | |
69 V Tq, To, Ta, Tf; | |
70 Tq = VADD(Tm, Tn); | |
71 To = VSUB(Tm, Tn); | |
72 Ta = VADD(T6, T9); | |
73 Tf = VSUB(T6, T9); | |
74 { | |
75 V Tr, Ts, Tt, Tu, Tg, Ti, Tb, Th; | |
76 Tr = VFMAI(To, Tl); | |
77 STM2(&(xo[4]), Tr, ovs, &(xo[0])); | |
78 Ts = VFNMSI(To, Tl); | |
79 STM2(&(xo[12]), Ts, ovs, &(xo[0])); | |
80 Tt = VADD(Tp, Tq); | |
81 STM2(&(xo[0]), Tt, ovs, &(xo[0])); | |
82 Tu = VSUB(Tp, Tq); | |
83 STM2(&(xo[8]), Tu, ovs, &(xo[0])); | |
84 Tg = VFNMS(LDK(KP707106781), Tf, Te); | |
85 Ti = VFMA(LDK(KP707106781), Tf, Te); | |
86 Tb = VFNMS(LDK(KP707106781), Ta, T3); | |
87 Th = VFMA(LDK(KP707106781), Ta, T3); | |
88 { | |
89 V Tv, Tw, Tx, Ty; | |
90 Tv = VFNMSI(Ti, Th); | |
91 STM2(&(xo[14]), Tv, ovs, &(xo[2])); | |
92 STN2(&(xo[12]), Ts, Tv, ovs); | |
93 Tw = VFMAI(Ti, Th); | |
94 STM2(&(xo[2]), Tw, ovs, &(xo[2])); | |
95 STN2(&(xo[0]), Tt, Tw, ovs); | |
96 Tx = VFMAI(Tg, Tb); | |
97 STM2(&(xo[10]), Tx, ovs, &(xo[2])); | |
98 STN2(&(xo[8]), Tu, Tx, ovs); | |
99 Ty = VFNMSI(Tg, Tb); | |
100 STM2(&(xo[6]), Ty, ovs, &(xo[2])); | |
101 STN2(&(xo[4]), Tr, Ty, ovs); | |
102 } | |
103 } | |
104 } | |
105 } | |
106 } | |
107 } | |
108 VLEAVE(); | |
109 } | |
110 | |
111 static const kdft_desc desc = { 8, XSIMD_STRING("n2bv_8"), {16, 0, 10, 0}, &GENUS, 0, 2, 0, 0 }; | |
112 | |
113 void XSIMD(codelet_n2bv_8) (planner *p) { | |
114 X(kdft_register) (p, n2bv_8, &desc); | |
115 } | |
116 | |
117 #else /* HAVE_FMA */ | |
118 | |
119 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n2bv_8 -with-ostride 2 -include n2b.h -store-multiple 2 */ | |
120 | |
121 /* | |
122 * This function contains 26 FP additions, 2 FP multiplications, | |
123 * (or, 26 additions, 2 multiplications, 0 fused multiply/add), | |
124 * 24 stack variables, 1 constants, and 20 memory accesses | |
125 */ | |
126 #include "n2b.h" | |
127 | |
128 static void n2bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
129 { | |
130 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
131 { | |
132 INT i; | |
133 const R *xi; | |
134 R *xo; | |
135 xi = ii; | |
136 xo = io; | |
137 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { | |
138 V Ta, Tk, Te, Tj, T7, Tn, Tf, Tm, Tr, Tu; | |
139 { | |
140 V T8, T9, Tc, Td; | |
141 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
142 T9 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
143 Ta = VSUB(T8, T9); | |
144 Tk = VADD(T8, T9); | |
145 Tc = LD(&(xi[0]), ivs, &(xi[0])); | |
146 Td = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
147 Te = VSUB(Tc, Td); | |
148 Tj = VADD(Tc, Td); | |
149 { | |
150 V T1, T2, T3, T4, T5, T6; | |
151 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
152 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
153 T3 = VSUB(T1, T2); | |
154 T4 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
155 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
156 T6 = VSUB(T4, T5); | |
157 T7 = VMUL(LDK(KP707106781), VSUB(T3, T6)); | |
158 Tn = VADD(T4, T5); | |
159 Tf = VMUL(LDK(KP707106781), VADD(T3, T6)); | |
160 Tm = VADD(T1, T2); | |
161 } | |
162 } | |
163 { | |
164 V Ts, Tb, Tg, Tp, Tq, Tt; | |
165 Tb = VBYI(VSUB(T7, Ta)); | |
166 Tg = VSUB(Te, Tf); | |
167 Tr = VADD(Tb, Tg); | |
168 STM2(&(xo[6]), Tr, ovs, &(xo[2])); | |
169 Ts = VSUB(Tg, Tb); | |
170 STM2(&(xo[10]), Ts, ovs, &(xo[2])); | |
171 Tp = VADD(Tj, Tk); | |
172 Tq = VADD(Tm, Tn); | |
173 Tt = VSUB(Tp, Tq); | |
174 STM2(&(xo[8]), Tt, ovs, &(xo[0])); | |
175 STN2(&(xo[8]), Tt, Ts, ovs); | |
176 Tu = VADD(Tp, Tq); | |
177 STM2(&(xo[0]), Tu, ovs, &(xo[0])); | |
178 } | |
179 { | |
180 V Tw, Th, Ti, Tv; | |
181 Th = VBYI(VADD(Ta, T7)); | |
182 Ti = VADD(Te, Tf); | |
183 Tv = VADD(Th, Ti); | |
184 STM2(&(xo[2]), Tv, ovs, &(xo[2])); | |
185 STN2(&(xo[0]), Tu, Tv, ovs); | |
186 Tw = VSUB(Ti, Th); | |
187 STM2(&(xo[14]), Tw, ovs, &(xo[2])); | |
188 { | |
189 V Tl, To, Tx, Ty; | |
190 Tl = VSUB(Tj, Tk); | |
191 To = VBYI(VSUB(Tm, Tn)); | |
192 Tx = VSUB(Tl, To); | |
193 STM2(&(xo[12]), Tx, ovs, &(xo[0])); | |
194 STN2(&(xo[12]), Tx, Tw, ovs); | |
195 Ty = VADD(Tl, To); | |
196 STM2(&(xo[4]), Ty, ovs, &(xo[0])); | |
197 STN2(&(xo[4]), Ty, Tr, ovs); | |
198 } | |
199 } | |
200 } | |
201 } | |
202 VLEAVE(); | |
203 } | |
204 | |
205 static const kdft_desc desc = { 8, XSIMD_STRING("n2bv_8"), {26, 2, 0, 0}, &GENUS, 0, 2, 0, 0 }; | |
206 | |
207 void XSIMD(codelet_n2bv_8) (planner *p) { | |
208 X(kdft_register) (p, n2bv_8, &desc); | |
209 } | |
210 | |
211 #endif /* HAVE_FMA */ |