Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/scalar/codelets/t1_15.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/scalar/codelets/t1_15.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,801 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:35:50 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include t.h */ + +/* + * This function contains 184 FP additions, 140 FP multiplications, + * (or, 72 additions, 28 multiplications, 112 fused multiply/add), + * 89 stack variables, 6 constants, and 60 memory accesses + */ +#include "t.h" + +static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { + E T2d, T2O, T2Q, T2m, T2k, T2l, T2P, T2n; + { + E T1G, T3u, T3k, T3t, T1B, Tf, T37, T1y, T2V, T2M, T2a, T2i, T39, Tz, T2X; + E T2t, T1O, T2e, T3a, TT, T10, T2Y, T2z, T1V, T2f, T2C, T12, T15, T14, T21; + E T1c, T1Y, T13; + { + E T2I, T1k, T1m, T1p, T1o, T28, T1w, T25, T1n; + { + E T1, T3j, T9, Tc, Tb, T1D, T7, T1E, Ta, T1j, T1i, T1h; + T1 = ri[0]; + T3j = ii[0]; + { + E T3, T6, T2, T5, T1C, T4, T8; + T3 = ri[WS(rs, 5)]; + T6 = ii[WS(rs, 5)]; + T2 = W[8]; + T5 = W[9]; + T9 = ri[WS(rs, 10)]; + Tc = ii[WS(rs, 10)]; + T1C = T2 * T6; + T4 = T2 * T3; + T8 = W[18]; + Tb = W[19]; + T1D = FNMS(T5, T3, T1C); + T7 = FMA(T5, T6, T4); + T1E = T8 * Tc; + Ta = T8 * T9; + } + { + E T1g, T1F, Td, T1f, T3i, Te, T2H; + T1g = ri[WS(rs, 9)]; + T1j = ii[WS(rs, 9)]; + T1F = FNMS(Tb, T9, T1E); + Td = FMA(Tb, Tc, Ta); + T1f = W[16]; + T1i = W[17]; + T1G = T1D - T1F; + T3i = T1D + T1F; + T3u = Td - T7; + Te = T7 + Td; + T2H = T1f * T1j; + T1h = T1f * T1g; + T3k = T3i + T3j; + T3t = FNMS(KP500000000, T3i, T3j); + T1B = FNMS(KP500000000, Te, T1); + Tf = T1 + Te; + T2I = FNMS(T1i, T1g, T2H); + } + T1k = FMA(T1i, T1j, T1h); + { + E T1s, T1v, T1r, T1u, T27, T1t, T1l; + T1s = ri[WS(rs, 4)]; + T1v = ii[WS(rs, 4)]; + T1r = W[6]; + T1u = W[7]; + T1m = ri[WS(rs, 14)]; + T1p = ii[WS(rs, 14)]; + T27 = T1r * T1v; + T1t = T1r * T1s; + T1l = W[26]; + T1o = W[27]; + T28 = FNMS(T1u, T1s, T27); + T1w = FMA(T1u, T1v, T1t); + T25 = T1l * T1p; + T1n = T1l * T1m; + } + } + { + E Tl, T2p, Tn, Tq, Tp, T1M, Tx, T1J, To; + { + E Th, Tk, T26, T1q, Tg, Tj; + Th = ri[WS(rs, 3)]; + Tk = ii[WS(rs, 3)]; + T26 = FNMS(T1o, T1m, T25); + T1q = FMA(T1o, T1p, T1n); + Tg = W[4]; + Tj = W[5]; + { + E T29, T2J, T1x, T2L; + T29 = T26 - T28; + T2J = T26 + T28; + T1x = T1q + T1w; + T2L = T1w - T1q; + { + E T2o, Ti, T2K, T24; + T2o = Tg * Tk; + Ti = Tg * Th; + T2K = FNMS(KP500000000, T2J, T2I); + T37 = T2I + T2J; + T24 = FNMS(KP500000000, T1x, T1k); + T1y = T1k + T1x; + Tl = FMA(Tj, Tk, Ti); + T2V = FNMS(KP866025403, T2L, T2K); + T2M = FMA(KP866025403, T2L, T2K); + T2a = FNMS(KP866025403, T29, T24); + T2i = FMA(KP866025403, T29, T24); + T2p = FNMS(Tj, Th, T2o); + } + } + } + { + E Tt, Tw, Ts, Tv, T1L, Tu, Tm; + Tt = ri[WS(rs, 13)]; + Tw = ii[WS(rs, 13)]; + Ts = W[24]; + Tv = W[25]; + Tn = ri[WS(rs, 8)]; + Tq = ii[WS(rs, 8)]; + T1L = Ts * Tw; + Tu = Ts * Tt; + Tm = W[14]; + Tp = W[15]; + T1M = FNMS(Tv, Tt, T1L); + Tx = FMA(Tv, Tw, Tu); + T1J = Tm * Tq; + To = Tm * Tn; + } + { + E TF, T2v, TH, TK, TJ, T1T, TR, T1Q, TI; + { + E TB, TE, T1K, Tr, TA, TD; + TB = ri[WS(rs, 12)]; + TE = ii[WS(rs, 12)]; + T1K = FNMS(Tp, Tn, T1J); + Tr = FMA(Tp, Tq, To); + TA = W[22]; + TD = W[23]; + { + E T1N, T2q, Ty, T2s; + T1N = T1K - T1M; + T2q = T1K + T1M; + Ty = Tr + Tx; + T2s = Tx - Tr; + { + E T2u, TC, T2r, T1I; + T2u = TA * TE; + TC = TA * TB; + T2r = FNMS(KP500000000, T2q, T2p); + T39 = T2p + T2q; + T1I = FNMS(KP500000000, Ty, Tl); + Tz = Tl + Ty; + TF = FMA(TD, TE, TC); + T2X = FNMS(KP866025403, T2s, T2r); + T2t = FMA(KP866025403, T2s, T2r); + T1O = FNMS(KP866025403, T1N, T1I); + T2e = FMA(KP866025403, T1N, T1I); + T2v = FNMS(TD, TB, T2u); + } + } + } + { + E TN, TQ, TM, TP, T1S, TO, TG; + TN = ri[WS(rs, 7)]; + TQ = ii[WS(rs, 7)]; + TM = W[12]; + TP = W[13]; + TH = ri[WS(rs, 2)]; + TK = ii[WS(rs, 2)]; + T1S = TM * TQ; + TO = TM * TN; + TG = W[2]; + TJ = W[3]; + T1T = FNMS(TP, TN, T1S); + TR = FMA(TP, TQ, TO); + T1Q = TG * TK; + TI = TG * TH; + } + { + E TW, TZ, T1R, TL, TV, TY; + TW = ri[WS(rs, 6)]; + TZ = ii[WS(rs, 6)]; + T1R = FNMS(TJ, TH, T1Q); + TL = FMA(TJ, TK, TI); + TV = W[10]; + TY = W[11]; + { + E T1U, T2w, TS, T2y; + T1U = T1R - T1T; + T2w = T1R + T1T; + TS = TL + TR; + T2y = TR - TL; + { + E T2B, TX, T2x, T1P; + T2B = TV * TZ; + TX = TV * TW; + T2x = FNMS(KP500000000, T2w, T2v); + T3a = T2v + T2w; + T1P = FNMS(KP500000000, TS, TF); + TT = TF + TS; + T10 = FMA(TY, TZ, TX); + T2Y = FNMS(KP866025403, T2y, T2x); + T2z = FMA(KP866025403, T2y, T2x); + T1V = FNMS(KP866025403, T1U, T1P); + T2f = FMA(KP866025403, T1U, T1P); + T2C = FNMS(TY, TW, T2B); + } + } + } + { + E T18, T1b, T17, T1a, T20, T19, T11; + T18 = ri[WS(rs, 1)]; + T1b = ii[WS(rs, 1)]; + T17 = W[0]; + T1a = W[1]; + T12 = ri[WS(rs, 11)]; + T15 = ii[WS(rs, 11)]; + T20 = T17 * T1b; + T19 = T17 * T18; + T11 = W[20]; + T14 = W[21]; + T21 = FNMS(T1a, T18, T20); + T1c = FMA(T1a, T1b, T19); + T1Y = T11 * T15; + T13 = T11 * T12; + } + } + } + } + { + E T2G, T2h, T3J, T3I, T32, T30, T1H, T1W, T3P, T3O, T2b; + { + E T3f, T3b, T1Z, T16, T3p, TU; + T3f = T39 + T3a; + T3b = T39 - T3a; + T1Z = FNMS(T14, T12, T1Y); + T16 = FMA(T14, T15, T13); + T3p = Tz - TT; + TU = Tz + TT; + { + E T3g, T2U, T23, T3c, T3e, T3q, T3s, T1A, T34, T3r, T3n; + { + E T22, T1d, T2F, T2E, T36, T2D; + T22 = T1Z - T21; + T2D = T1Z + T21; + T1d = T16 + T1c; + T2F = T1c - T16; + T2E = FNMS(KP500000000, T2D, T2C); + T36 = T2C + T2D; + { + E T1e, T1X, T38, T1z, T3o; + T1e = T10 + T1d; + T1X = FNMS(KP500000000, T1d, T10); + T38 = T36 - T37; + T3g = T36 + T37; + T2G = FMA(KP866025403, T2F, T2E); + T2U = FNMS(KP866025403, T2F, T2E); + T1z = T1e + T1y; + T3o = T1e - T1y; + T2h = FMA(KP866025403, T22, T1X); + T23 = FNMS(KP866025403, T22, T1X); + T3c = FNMS(KP618033988, T3b, T38); + T3e = FMA(KP618033988, T38, T3b); + T3q = FNMS(KP618033988, T3p, T3o); + T3s = FMA(KP618033988, T3o, T3p); + T1A = TU + T1z; + T34 = TU - T1z; + } + } + { + E T2W, T33, T3m, T3h, T2Z, T3d, T35, T3l; + T3J = T2U + T2V; + T2W = T2U - T2V; + ri[0] = Tf + T1A; + T33 = FNMS(KP250000000, T1A, Tf); + T3m = T3f - T3g; + T3h = T3f + T3g; + T2Z = T2X - T2Y; + T3I = T2X + T2Y; + T3d = FMA(KP559016994, T34, T33); + T35 = FNMS(KP559016994, T34, T33); + ii[0] = T3h + T3k; + T3l = FNMS(KP250000000, T3h, T3k); + ri[WS(rs, 3)] = FMA(KP951056516, T3c, T35); + ri[WS(rs, 12)] = FNMS(KP951056516, T3c, T35); + ri[WS(rs, 6)] = FMA(KP951056516, T3e, T3d); + ri[WS(rs, 9)] = FNMS(KP951056516, T3e, T3d); + T3r = FMA(KP559016994, T3m, T3l); + T3n = FNMS(KP559016994, T3m, T3l); + T32 = FMA(KP618033988, T2W, T2Z); + T30 = FNMS(KP618033988, T2Z, T2W); + } + ii[WS(rs, 12)] = FMA(KP951056516, T3q, T3n); + ii[WS(rs, 3)] = FNMS(KP951056516, T3q, T3n); + ii[WS(rs, 9)] = FMA(KP951056516, T3s, T3r); + ii[WS(rs, 6)] = FNMS(KP951056516, T3s, T3r); + T2d = FMA(KP866025403, T1G, T1B); + T1H = FNMS(KP866025403, T1G, T1B); + T1W = T1O + T1V; + T3P = T1O - T1V; + T3O = T23 - T2a; + T2b = T23 + T2a; + } + } + { + E T3H, T3v, T2S, T3Q, T3S, T2R, T2c; + T3H = FNMS(KP866025403, T3u, T3t); + T3v = FMA(KP866025403, T3u, T3t); + T2c = T1W + T2b; + T2S = T1W - T2b; + T3Q = FNMS(KP618033988, T3P, T3O); + T3S = FMA(KP618033988, T3O, T3P); + ri[WS(rs, 5)] = T1H + T2c; + T2R = FNMS(KP250000000, T2c, T1H); + { + E T2g, T2j, T3G, T3E, T2A, T2N, T3y, T3A, T3M, T3L, T3z, T3F, T3B; + { + E T3C, T3D, T31, T2T, T3K; + T2g = T2e + T2f; + T3C = T2e - T2f; + T3D = T2h - T2i; + T2j = T2h + T2i; + T31 = FMA(KP559016994, T2S, T2R); + T2T = FNMS(KP559016994, T2S, T2R); + T3K = T3I + T3J; + T3M = T3I - T3J; + ri[WS(rs, 8)] = FMA(KP951056516, T30, T2T); + ri[WS(rs, 2)] = FNMS(KP951056516, T30, T2T); + ri[WS(rs, 11)] = FMA(KP951056516, T32, T31); + ri[WS(rs, 14)] = FNMS(KP951056516, T32, T31); + ii[WS(rs, 5)] = T3K + T3H; + T3L = FNMS(KP250000000, T3K, T3H); + T3G = FNMS(KP618033988, T3C, T3D); + T3E = FMA(KP618033988, T3D, T3C); + } + { + E T3N, T3R, T3w, T3x; + T3N = FNMS(KP559016994, T3M, T3L); + T3R = FMA(KP559016994, T3M, T3L); + T3w = T2t + T2z; + T2A = T2t - T2z; + T2N = T2G - T2M; + T3x = T2G + T2M; + ii[WS(rs, 8)] = FNMS(KP951056516, T3Q, T3N); + ii[WS(rs, 2)] = FMA(KP951056516, T3Q, T3N); + ii[WS(rs, 14)] = FMA(KP951056516, T3S, T3R); + ii[WS(rs, 11)] = FNMS(KP951056516, T3S, T3R); + T3y = T3w + T3x; + T3A = T3w - T3x; + } + ii[WS(rs, 10)] = T3y + T3v; + T3z = FNMS(KP250000000, T3y, T3v); + T2O = FMA(KP618033988, T2N, T2A); + T2Q = FNMS(KP618033988, T2A, T2N); + T3F = FNMS(KP559016994, T3A, T3z); + T3B = FMA(KP559016994, T3A, T3z); + ii[WS(rs, 4)] = FMA(KP951056516, T3E, T3B); + ii[WS(rs, 1)] = FNMS(KP951056516, T3E, T3B); + ii[WS(rs, 13)] = FNMS(KP951056516, T3G, T3F); + ii[WS(rs, 7)] = FMA(KP951056516, T3G, T3F); + T2m = T2g - T2j; + T2k = T2g + T2j; + } + } + } + } + ri[WS(rs, 10)] = T2d + T2k; + T2l = FNMS(KP250000000, T2k, T2d); + T2P = FNMS(KP559016994, T2m, T2l); + T2n = FMA(KP559016994, T2m, T2l); + ri[WS(rs, 1)] = FMA(KP951056516, T2O, T2n); + ri[WS(rs, 4)] = FNMS(KP951056516, T2O, T2n); + ri[WS(rs, 13)] = FMA(KP951056516, T2Q, T2P); + ri[WS(rs, 7)] = FNMS(KP951056516, T2Q, T2P); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 15}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, {72, 28, 112, 0}, 0, 0, 0 }; + +void X(codelet_t1_15) (planner *p) { + X(kdft_dit_register) (p, t1_15, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include t.h */ + +/* + * This function contains 184 FP additions, 112 FP multiplications, + * (or, 128 additions, 56 multiplications, 56 fused multiply/add), + * 65 stack variables, 6 constants, and 60 memory accesses + */ +#include "t.h" + +static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { + E T1q, T34, Td, T1n, T2S, T35, T13, T1k, T1l, T2E, T2F, T2O, T1H, T1T, T2k; + E T2t, T2f, T2s, T1M, T1U, Tu, TL, TM, T2H, T2I, T2N, T1w, T1Q, T29, T2w; + E T24, T2v, T1B, T1R; + { + E T1, T2R, T6, T1o, Tb, T1p, Tc, T2Q; + T1 = ri[0]; + T2R = ii[0]; + { + E T3, T5, T2, T4; + T3 = ri[WS(rs, 5)]; + T5 = ii[WS(rs, 5)]; + T2 = W[8]; + T4 = W[9]; + T6 = FMA(T2, T3, T4 * T5); + T1o = FNMS(T4, T3, T2 * T5); + } + { + E T8, Ta, T7, T9; + T8 = ri[WS(rs, 10)]; + Ta = ii[WS(rs, 10)]; + T7 = W[18]; + T9 = W[19]; + Tb = FMA(T7, T8, T9 * Ta); + T1p = FNMS(T9, T8, T7 * Ta); + } + T1q = KP866025403 * (T1o - T1p); + T34 = KP866025403 * (Tb - T6); + Tc = T6 + Tb; + Td = T1 + Tc; + T1n = FNMS(KP500000000, Tc, T1); + T2Q = T1o + T1p; + T2S = T2Q + T2R; + T35 = FNMS(KP500000000, T2Q, T2R); + } + { + E TR, T2c, T18, T2h, TW, T1E, T11, T1F, T12, T2d, T1d, T1J, T1i, T1K, T1j; + E T2i; + { + E TO, TQ, TN, TP; + TO = ri[WS(rs, 6)]; + TQ = ii[WS(rs, 6)]; + TN = W[10]; + TP = W[11]; + TR = FMA(TN, TO, TP * TQ); + T2c = FNMS(TP, TO, TN * TQ); + } + { + E T15, T17, T14, T16; + T15 = ri[WS(rs, 9)]; + T17 = ii[WS(rs, 9)]; + T14 = W[16]; + T16 = W[17]; + T18 = FMA(T14, T15, T16 * T17); + T2h = FNMS(T16, T15, T14 * T17); + } + { + E TT, TV, TS, TU; + TT = ri[WS(rs, 11)]; + TV = ii[WS(rs, 11)]; + TS = W[20]; + TU = W[21]; + TW = FMA(TS, TT, TU * TV); + T1E = FNMS(TU, TT, TS * TV); + } + { + E TY, T10, TX, TZ; + TY = ri[WS(rs, 1)]; + T10 = ii[WS(rs, 1)]; + TX = W[0]; + TZ = W[1]; + T11 = FMA(TX, TY, TZ * T10); + T1F = FNMS(TZ, TY, TX * T10); + } + T12 = TW + T11; + T2d = T1E + T1F; + { + E T1a, T1c, T19, T1b; + T1a = ri[WS(rs, 14)]; + T1c = ii[WS(rs, 14)]; + T19 = W[26]; + T1b = W[27]; + T1d = FMA(T19, T1a, T1b * T1c); + T1J = FNMS(T1b, T1a, T19 * T1c); + } + { + E T1f, T1h, T1e, T1g; + T1f = ri[WS(rs, 4)]; + T1h = ii[WS(rs, 4)]; + T1e = W[6]; + T1g = W[7]; + T1i = FMA(T1e, T1f, T1g * T1h); + T1K = FNMS(T1g, T1f, T1e * T1h); + } + T1j = T1d + T1i; + T2i = T1J + T1K; + { + E T1D, T1G, T2g, T2j; + T13 = TR + T12; + T1k = T18 + T1j; + T1l = T13 + T1k; + T2E = T2c + T2d; + T2F = T2h + T2i; + T2O = T2E + T2F; + T1D = FNMS(KP500000000, T12, TR); + T1G = KP866025403 * (T1E - T1F); + T1H = T1D - T1G; + T1T = T1D + T1G; + T2g = KP866025403 * (T1i - T1d); + T2j = FNMS(KP500000000, T2i, T2h); + T2k = T2g + T2j; + T2t = T2j - T2g; + { + E T2b, T2e, T1I, T1L; + T2b = KP866025403 * (T11 - TW); + T2e = FNMS(KP500000000, T2d, T2c); + T2f = T2b + T2e; + T2s = T2e - T2b; + T1I = FNMS(KP500000000, T1j, T18); + T1L = KP866025403 * (T1J - T1K); + T1M = T1I - T1L; + T1U = T1I + T1L; + } + } + } + { + E Ti, T21, Tz, T26, Tn, T1t, Ts, T1u, Tt, T22, TE, T1y, TJ, T1z, TK; + E T27; + { + E Tf, Th, Te, Tg; + Tf = ri[WS(rs, 3)]; + Th = ii[WS(rs, 3)]; + Te = W[4]; + Tg = W[5]; + Ti = FMA(Te, Tf, Tg * Th); + T21 = FNMS(Tg, Tf, Te * Th); + } + { + E Tw, Ty, Tv, Tx; + Tw = ri[WS(rs, 12)]; + Ty = ii[WS(rs, 12)]; + Tv = W[22]; + Tx = W[23]; + Tz = FMA(Tv, Tw, Tx * Ty); + T26 = FNMS(Tx, Tw, Tv * Ty); + } + { + E Tk, Tm, Tj, Tl; + Tk = ri[WS(rs, 8)]; + Tm = ii[WS(rs, 8)]; + Tj = W[14]; + Tl = W[15]; + Tn = FMA(Tj, Tk, Tl * Tm); + T1t = FNMS(Tl, Tk, Tj * Tm); + } + { + E Tp, Tr, To, Tq; + Tp = ri[WS(rs, 13)]; + Tr = ii[WS(rs, 13)]; + To = W[24]; + Tq = W[25]; + Ts = FMA(To, Tp, Tq * Tr); + T1u = FNMS(Tq, Tp, To * Tr); + } + Tt = Tn + Ts; + T22 = T1t + T1u; + { + E TB, TD, TA, TC; + TB = ri[WS(rs, 2)]; + TD = ii[WS(rs, 2)]; + TA = W[2]; + TC = W[3]; + TE = FMA(TA, TB, TC * TD); + T1y = FNMS(TC, TB, TA * TD); + } + { + E TG, TI, TF, TH; + TG = ri[WS(rs, 7)]; + TI = ii[WS(rs, 7)]; + TF = W[12]; + TH = W[13]; + TJ = FMA(TF, TG, TH * TI); + T1z = FNMS(TH, TG, TF * TI); + } + TK = TE + TJ; + T27 = T1y + T1z; + { + E T1s, T1v, T25, T28; + Tu = Ti + Tt; + TL = Tz + TK; + TM = Tu + TL; + T2H = T21 + T22; + T2I = T26 + T27; + T2N = T2H + T2I; + T1s = FNMS(KP500000000, Tt, Ti); + T1v = KP866025403 * (T1t - T1u); + T1w = T1s - T1v; + T1Q = T1s + T1v; + T25 = KP866025403 * (TJ - TE); + T28 = FNMS(KP500000000, T27, T26); + T29 = T25 + T28; + T2w = T28 - T25; + { + E T20, T23, T1x, T1A; + T20 = KP866025403 * (Ts - Tn); + T23 = FNMS(KP500000000, T22, T21); + T24 = T20 + T23; + T2v = T23 - T20; + T1x = FNMS(KP500000000, TK, Tz); + T1A = KP866025403 * (T1y - T1z); + T1B = T1x - T1A; + T1R = T1x + T1A; + } + } + } + { + E T2C, T1m, T2B, T2K, T2M, T2G, T2J, T2L, T2D; + T2C = KP559016994 * (TM - T1l); + T1m = TM + T1l; + T2B = FNMS(KP250000000, T1m, Td); + T2G = T2E - T2F; + T2J = T2H - T2I; + T2K = FNMS(KP587785252, T2J, KP951056516 * T2G); + T2M = FMA(KP951056516, T2J, KP587785252 * T2G); + ri[0] = Td + T1m; + T2L = T2C + T2B; + ri[WS(rs, 9)] = T2L - T2M; + ri[WS(rs, 6)] = T2L + T2M; + T2D = T2B - T2C; + ri[WS(rs, 12)] = T2D - T2K; + ri[WS(rs, 3)] = T2D + T2K; + } + { + E T2U, T2P, T2T, T2Y, T30, T2W, T2X, T2Z, T2V; + T2U = KP559016994 * (T2N - T2O); + T2P = T2N + T2O; + T2T = FNMS(KP250000000, T2P, T2S); + T2W = T13 - T1k; + T2X = Tu - TL; + T2Y = FNMS(KP587785252, T2X, KP951056516 * T2W); + T30 = FMA(KP951056516, T2X, KP587785252 * T2W); + ii[0] = T2P + T2S; + T2Z = T2U + T2T; + ii[WS(rs, 6)] = T2Z - T30; + ii[WS(rs, 9)] = T30 + T2Z; + T2V = T2T - T2U; + ii[WS(rs, 3)] = T2V - T2Y; + ii[WS(rs, 12)] = T2Y + T2V; + } + { + E T2y, T2A, T1r, T1O, T2p, T2q, T2z, T2r; + { + E T2u, T2x, T1C, T1N; + T2u = T2s - T2t; + T2x = T2v - T2w; + T2y = FNMS(KP587785252, T2x, KP951056516 * T2u); + T2A = FMA(KP951056516, T2x, KP587785252 * T2u); + T1r = T1n - T1q; + T1C = T1w + T1B; + T1N = T1H + T1M; + T1O = T1C + T1N; + T2p = FNMS(KP250000000, T1O, T1r); + T2q = KP559016994 * (T1C - T1N); + } + ri[WS(rs, 5)] = T1r + T1O; + T2z = T2q + T2p; + ri[WS(rs, 14)] = T2z - T2A; + ri[WS(rs, 11)] = T2z + T2A; + T2r = T2p - T2q; + ri[WS(rs, 2)] = T2r - T2y; + ri[WS(rs, 8)] = T2r + T2y; + } + { + E T3h, T3q, T3i, T3l, T3m, T3n, T3p, T3o; + { + E T3f, T3g, T3j, T3k; + T3f = T1H - T1M; + T3g = T1w - T1B; + T3h = FNMS(KP587785252, T3g, KP951056516 * T3f); + T3q = FMA(KP951056516, T3g, KP587785252 * T3f); + T3i = T35 - T34; + T3j = T2v + T2w; + T3k = T2s + T2t; + T3l = T3j + T3k; + T3m = FNMS(KP250000000, T3l, T3i); + T3n = KP559016994 * (T3j - T3k); + } + ii[WS(rs, 5)] = T3l + T3i; + T3p = T3n + T3m; + ii[WS(rs, 11)] = T3p - T3q; + ii[WS(rs, 14)] = T3q + T3p; + T3o = T3m - T3n; + ii[WS(rs, 2)] = T3h + T3o; + ii[WS(rs, 8)] = T3o - T3h; + } + { + E T3c, T3d, T36, T37, T33, T38, T3e, T39; + { + E T3a, T3b, T31, T32; + T3a = T1Q - T1R; + T3b = T1T - T1U; + T3c = FMA(KP951056516, T3a, KP587785252 * T3b); + T3d = FNMS(KP587785252, T3a, KP951056516 * T3b); + T36 = T34 + T35; + T31 = T24 + T29; + T32 = T2f + T2k; + T37 = T31 + T32; + T33 = KP559016994 * (T31 - T32); + T38 = FNMS(KP250000000, T37, T36); + } + ii[WS(rs, 10)] = T37 + T36; + T3e = T38 - T33; + ii[WS(rs, 7)] = T3d + T3e; + ii[WS(rs, 13)] = T3e - T3d; + T39 = T33 + T38; + ii[WS(rs, 1)] = T39 - T3c; + ii[WS(rs, 4)] = T3c + T39; + } + { + E T2m, T2o, T1P, T1W, T1X, T1Y, T2n, T1Z; + { + E T2a, T2l, T1S, T1V; + T2a = T24 - T29; + T2l = T2f - T2k; + T2m = FMA(KP951056516, T2a, KP587785252 * T2l); + T2o = FNMS(KP587785252, T2a, KP951056516 * T2l); + T1P = T1n + T1q; + T1S = T1Q + T1R; + T1V = T1T + T1U; + T1W = T1S + T1V; + T1X = KP559016994 * (T1S - T1V); + T1Y = FNMS(KP250000000, T1W, T1P); + } + ri[WS(rs, 10)] = T1P + T1W; + T2n = T1Y - T1X; + ri[WS(rs, 7)] = T2n - T2o; + ri[WS(rs, 13)] = T2n + T2o; + T1Z = T1X + T1Y; + ri[WS(rs, 4)] = T1Z - T2m; + ri[WS(rs, 1)] = T1Z + T2m; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 15}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, {128, 56, 56, 0}, 0, 0, 0 }; + +void X(codelet_t1_15) (planner *p) { + X(kdft_dit_register) (p, t1_15, &desc); +} +#endif /* HAVE_FMA */