comparison src/fftw-3.3.3/dft/scalar/codelets/t1_15.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:35:50 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include t.h */
29
30 /*
31 * This function contains 184 FP additions, 140 FP multiplications,
32 * (or, 72 additions, 28 multiplications, 112 fused multiply/add),
33 * 89 stack variables, 6 constants, and 60 memory accesses
34 */
35 #include "t.h"
36
37 static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
44 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
45 {
46 INT m;
47 for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) {
48 E T2d, T2O, T2Q, T2m, T2k, T2l, T2P, T2n;
49 {
50 E T1G, T3u, T3k, T3t, T1B, Tf, T37, T1y, T2V, T2M, T2a, T2i, T39, Tz, T2X;
51 E T2t, T1O, T2e, T3a, TT, T10, T2Y, T2z, T1V, T2f, T2C, T12, T15, T14, T21;
52 E T1c, T1Y, T13;
53 {
54 E T2I, T1k, T1m, T1p, T1o, T28, T1w, T25, T1n;
55 {
56 E T1, T3j, T9, Tc, Tb, T1D, T7, T1E, Ta, T1j, T1i, T1h;
57 T1 = ri[0];
58 T3j = ii[0];
59 {
60 E T3, T6, T2, T5, T1C, T4, T8;
61 T3 = ri[WS(rs, 5)];
62 T6 = ii[WS(rs, 5)];
63 T2 = W[8];
64 T5 = W[9];
65 T9 = ri[WS(rs, 10)];
66 Tc = ii[WS(rs, 10)];
67 T1C = T2 * T6;
68 T4 = T2 * T3;
69 T8 = W[18];
70 Tb = W[19];
71 T1D = FNMS(T5, T3, T1C);
72 T7 = FMA(T5, T6, T4);
73 T1E = T8 * Tc;
74 Ta = T8 * T9;
75 }
76 {
77 E T1g, T1F, Td, T1f, T3i, Te, T2H;
78 T1g = ri[WS(rs, 9)];
79 T1j = ii[WS(rs, 9)];
80 T1F = FNMS(Tb, T9, T1E);
81 Td = FMA(Tb, Tc, Ta);
82 T1f = W[16];
83 T1i = W[17];
84 T1G = T1D - T1F;
85 T3i = T1D + T1F;
86 T3u = Td - T7;
87 Te = T7 + Td;
88 T2H = T1f * T1j;
89 T1h = T1f * T1g;
90 T3k = T3i + T3j;
91 T3t = FNMS(KP500000000, T3i, T3j);
92 T1B = FNMS(KP500000000, Te, T1);
93 Tf = T1 + Te;
94 T2I = FNMS(T1i, T1g, T2H);
95 }
96 T1k = FMA(T1i, T1j, T1h);
97 {
98 E T1s, T1v, T1r, T1u, T27, T1t, T1l;
99 T1s = ri[WS(rs, 4)];
100 T1v = ii[WS(rs, 4)];
101 T1r = W[6];
102 T1u = W[7];
103 T1m = ri[WS(rs, 14)];
104 T1p = ii[WS(rs, 14)];
105 T27 = T1r * T1v;
106 T1t = T1r * T1s;
107 T1l = W[26];
108 T1o = W[27];
109 T28 = FNMS(T1u, T1s, T27);
110 T1w = FMA(T1u, T1v, T1t);
111 T25 = T1l * T1p;
112 T1n = T1l * T1m;
113 }
114 }
115 {
116 E Tl, T2p, Tn, Tq, Tp, T1M, Tx, T1J, To;
117 {
118 E Th, Tk, T26, T1q, Tg, Tj;
119 Th = ri[WS(rs, 3)];
120 Tk = ii[WS(rs, 3)];
121 T26 = FNMS(T1o, T1m, T25);
122 T1q = FMA(T1o, T1p, T1n);
123 Tg = W[4];
124 Tj = W[5];
125 {
126 E T29, T2J, T1x, T2L;
127 T29 = T26 - T28;
128 T2J = T26 + T28;
129 T1x = T1q + T1w;
130 T2L = T1w - T1q;
131 {
132 E T2o, Ti, T2K, T24;
133 T2o = Tg * Tk;
134 Ti = Tg * Th;
135 T2K = FNMS(KP500000000, T2J, T2I);
136 T37 = T2I + T2J;
137 T24 = FNMS(KP500000000, T1x, T1k);
138 T1y = T1k + T1x;
139 Tl = FMA(Tj, Tk, Ti);
140 T2V = FNMS(KP866025403, T2L, T2K);
141 T2M = FMA(KP866025403, T2L, T2K);
142 T2a = FNMS(KP866025403, T29, T24);
143 T2i = FMA(KP866025403, T29, T24);
144 T2p = FNMS(Tj, Th, T2o);
145 }
146 }
147 }
148 {
149 E Tt, Tw, Ts, Tv, T1L, Tu, Tm;
150 Tt = ri[WS(rs, 13)];
151 Tw = ii[WS(rs, 13)];
152 Ts = W[24];
153 Tv = W[25];
154 Tn = ri[WS(rs, 8)];
155 Tq = ii[WS(rs, 8)];
156 T1L = Ts * Tw;
157 Tu = Ts * Tt;
158 Tm = W[14];
159 Tp = W[15];
160 T1M = FNMS(Tv, Tt, T1L);
161 Tx = FMA(Tv, Tw, Tu);
162 T1J = Tm * Tq;
163 To = Tm * Tn;
164 }
165 {
166 E TF, T2v, TH, TK, TJ, T1T, TR, T1Q, TI;
167 {
168 E TB, TE, T1K, Tr, TA, TD;
169 TB = ri[WS(rs, 12)];
170 TE = ii[WS(rs, 12)];
171 T1K = FNMS(Tp, Tn, T1J);
172 Tr = FMA(Tp, Tq, To);
173 TA = W[22];
174 TD = W[23];
175 {
176 E T1N, T2q, Ty, T2s;
177 T1N = T1K - T1M;
178 T2q = T1K + T1M;
179 Ty = Tr + Tx;
180 T2s = Tx - Tr;
181 {
182 E T2u, TC, T2r, T1I;
183 T2u = TA * TE;
184 TC = TA * TB;
185 T2r = FNMS(KP500000000, T2q, T2p);
186 T39 = T2p + T2q;
187 T1I = FNMS(KP500000000, Ty, Tl);
188 Tz = Tl + Ty;
189 TF = FMA(TD, TE, TC);
190 T2X = FNMS(KP866025403, T2s, T2r);
191 T2t = FMA(KP866025403, T2s, T2r);
192 T1O = FNMS(KP866025403, T1N, T1I);
193 T2e = FMA(KP866025403, T1N, T1I);
194 T2v = FNMS(TD, TB, T2u);
195 }
196 }
197 }
198 {
199 E TN, TQ, TM, TP, T1S, TO, TG;
200 TN = ri[WS(rs, 7)];
201 TQ = ii[WS(rs, 7)];
202 TM = W[12];
203 TP = W[13];
204 TH = ri[WS(rs, 2)];
205 TK = ii[WS(rs, 2)];
206 T1S = TM * TQ;
207 TO = TM * TN;
208 TG = W[2];
209 TJ = W[3];
210 T1T = FNMS(TP, TN, T1S);
211 TR = FMA(TP, TQ, TO);
212 T1Q = TG * TK;
213 TI = TG * TH;
214 }
215 {
216 E TW, TZ, T1R, TL, TV, TY;
217 TW = ri[WS(rs, 6)];
218 TZ = ii[WS(rs, 6)];
219 T1R = FNMS(TJ, TH, T1Q);
220 TL = FMA(TJ, TK, TI);
221 TV = W[10];
222 TY = W[11];
223 {
224 E T1U, T2w, TS, T2y;
225 T1U = T1R - T1T;
226 T2w = T1R + T1T;
227 TS = TL + TR;
228 T2y = TR - TL;
229 {
230 E T2B, TX, T2x, T1P;
231 T2B = TV * TZ;
232 TX = TV * TW;
233 T2x = FNMS(KP500000000, T2w, T2v);
234 T3a = T2v + T2w;
235 T1P = FNMS(KP500000000, TS, TF);
236 TT = TF + TS;
237 T10 = FMA(TY, TZ, TX);
238 T2Y = FNMS(KP866025403, T2y, T2x);
239 T2z = FMA(KP866025403, T2y, T2x);
240 T1V = FNMS(KP866025403, T1U, T1P);
241 T2f = FMA(KP866025403, T1U, T1P);
242 T2C = FNMS(TY, TW, T2B);
243 }
244 }
245 }
246 {
247 E T18, T1b, T17, T1a, T20, T19, T11;
248 T18 = ri[WS(rs, 1)];
249 T1b = ii[WS(rs, 1)];
250 T17 = W[0];
251 T1a = W[1];
252 T12 = ri[WS(rs, 11)];
253 T15 = ii[WS(rs, 11)];
254 T20 = T17 * T1b;
255 T19 = T17 * T18;
256 T11 = W[20];
257 T14 = W[21];
258 T21 = FNMS(T1a, T18, T20);
259 T1c = FMA(T1a, T1b, T19);
260 T1Y = T11 * T15;
261 T13 = T11 * T12;
262 }
263 }
264 }
265 }
266 {
267 E T2G, T2h, T3J, T3I, T32, T30, T1H, T1W, T3P, T3O, T2b;
268 {
269 E T3f, T3b, T1Z, T16, T3p, TU;
270 T3f = T39 + T3a;
271 T3b = T39 - T3a;
272 T1Z = FNMS(T14, T12, T1Y);
273 T16 = FMA(T14, T15, T13);
274 T3p = Tz - TT;
275 TU = Tz + TT;
276 {
277 E T3g, T2U, T23, T3c, T3e, T3q, T3s, T1A, T34, T3r, T3n;
278 {
279 E T22, T1d, T2F, T2E, T36, T2D;
280 T22 = T1Z - T21;
281 T2D = T1Z + T21;
282 T1d = T16 + T1c;
283 T2F = T1c - T16;
284 T2E = FNMS(KP500000000, T2D, T2C);
285 T36 = T2C + T2D;
286 {
287 E T1e, T1X, T38, T1z, T3o;
288 T1e = T10 + T1d;
289 T1X = FNMS(KP500000000, T1d, T10);
290 T38 = T36 - T37;
291 T3g = T36 + T37;
292 T2G = FMA(KP866025403, T2F, T2E);
293 T2U = FNMS(KP866025403, T2F, T2E);
294 T1z = T1e + T1y;
295 T3o = T1e - T1y;
296 T2h = FMA(KP866025403, T22, T1X);
297 T23 = FNMS(KP866025403, T22, T1X);
298 T3c = FNMS(KP618033988, T3b, T38);
299 T3e = FMA(KP618033988, T38, T3b);
300 T3q = FNMS(KP618033988, T3p, T3o);
301 T3s = FMA(KP618033988, T3o, T3p);
302 T1A = TU + T1z;
303 T34 = TU - T1z;
304 }
305 }
306 {
307 E T2W, T33, T3m, T3h, T2Z, T3d, T35, T3l;
308 T3J = T2U + T2V;
309 T2W = T2U - T2V;
310 ri[0] = Tf + T1A;
311 T33 = FNMS(KP250000000, T1A, Tf);
312 T3m = T3f - T3g;
313 T3h = T3f + T3g;
314 T2Z = T2X - T2Y;
315 T3I = T2X + T2Y;
316 T3d = FMA(KP559016994, T34, T33);
317 T35 = FNMS(KP559016994, T34, T33);
318 ii[0] = T3h + T3k;
319 T3l = FNMS(KP250000000, T3h, T3k);
320 ri[WS(rs, 3)] = FMA(KP951056516, T3c, T35);
321 ri[WS(rs, 12)] = FNMS(KP951056516, T3c, T35);
322 ri[WS(rs, 6)] = FMA(KP951056516, T3e, T3d);
323 ri[WS(rs, 9)] = FNMS(KP951056516, T3e, T3d);
324 T3r = FMA(KP559016994, T3m, T3l);
325 T3n = FNMS(KP559016994, T3m, T3l);
326 T32 = FMA(KP618033988, T2W, T2Z);
327 T30 = FNMS(KP618033988, T2Z, T2W);
328 }
329 ii[WS(rs, 12)] = FMA(KP951056516, T3q, T3n);
330 ii[WS(rs, 3)] = FNMS(KP951056516, T3q, T3n);
331 ii[WS(rs, 9)] = FMA(KP951056516, T3s, T3r);
332 ii[WS(rs, 6)] = FNMS(KP951056516, T3s, T3r);
333 T2d = FMA(KP866025403, T1G, T1B);
334 T1H = FNMS(KP866025403, T1G, T1B);
335 T1W = T1O + T1V;
336 T3P = T1O - T1V;
337 T3O = T23 - T2a;
338 T2b = T23 + T2a;
339 }
340 }
341 {
342 E T3H, T3v, T2S, T3Q, T3S, T2R, T2c;
343 T3H = FNMS(KP866025403, T3u, T3t);
344 T3v = FMA(KP866025403, T3u, T3t);
345 T2c = T1W + T2b;
346 T2S = T1W - T2b;
347 T3Q = FNMS(KP618033988, T3P, T3O);
348 T3S = FMA(KP618033988, T3O, T3P);
349 ri[WS(rs, 5)] = T1H + T2c;
350 T2R = FNMS(KP250000000, T2c, T1H);
351 {
352 E T2g, T2j, T3G, T3E, T2A, T2N, T3y, T3A, T3M, T3L, T3z, T3F, T3B;
353 {
354 E T3C, T3D, T31, T2T, T3K;
355 T2g = T2e + T2f;
356 T3C = T2e - T2f;
357 T3D = T2h - T2i;
358 T2j = T2h + T2i;
359 T31 = FMA(KP559016994, T2S, T2R);
360 T2T = FNMS(KP559016994, T2S, T2R);
361 T3K = T3I + T3J;
362 T3M = T3I - T3J;
363 ri[WS(rs, 8)] = FMA(KP951056516, T30, T2T);
364 ri[WS(rs, 2)] = FNMS(KP951056516, T30, T2T);
365 ri[WS(rs, 11)] = FMA(KP951056516, T32, T31);
366 ri[WS(rs, 14)] = FNMS(KP951056516, T32, T31);
367 ii[WS(rs, 5)] = T3K + T3H;
368 T3L = FNMS(KP250000000, T3K, T3H);
369 T3G = FNMS(KP618033988, T3C, T3D);
370 T3E = FMA(KP618033988, T3D, T3C);
371 }
372 {
373 E T3N, T3R, T3w, T3x;
374 T3N = FNMS(KP559016994, T3M, T3L);
375 T3R = FMA(KP559016994, T3M, T3L);
376 T3w = T2t + T2z;
377 T2A = T2t - T2z;
378 T2N = T2G - T2M;
379 T3x = T2G + T2M;
380 ii[WS(rs, 8)] = FNMS(KP951056516, T3Q, T3N);
381 ii[WS(rs, 2)] = FMA(KP951056516, T3Q, T3N);
382 ii[WS(rs, 14)] = FMA(KP951056516, T3S, T3R);
383 ii[WS(rs, 11)] = FNMS(KP951056516, T3S, T3R);
384 T3y = T3w + T3x;
385 T3A = T3w - T3x;
386 }
387 ii[WS(rs, 10)] = T3y + T3v;
388 T3z = FNMS(KP250000000, T3y, T3v);
389 T2O = FMA(KP618033988, T2N, T2A);
390 T2Q = FNMS(KP618033988, T2A, T2N);
391 T3F = FNMS(KP559016994, T3A, T3z);
392 T3B = FMA(KP559016994, T3A, T3z);
393 ii[WS(rs, 4)] = FMA(KP951056516, T3E, T3B);
394 ii[WS(rs, 1)] = FNMS(KP951056516, T3E, T3B);
395 ii[WS(rs, 13)] = FNMS(KP951056516, T3G, T3F);
396 ii[WS(rs, 7)] = FMA(KP951056516, T3G, T3F);
397 T2m = T2g - T2j;
398 T2k = T2g + T2j;
399 }
400 }
401 }
402 }
403 ri[WS(rs, 10)] = T2d + T2k;
404 T2l = FNMS(KP250000000, T2k, T2d);
405 T2P = FNMS(KP559016994, T2m, T2l);
406 T2n = FMA(KP559016994, T2m, T2l);
407 ri[WS(rs, 1)] = FMA(KP951056516, T2O, T2n);
408 ri[WS(rs, 4)] = FNMS(KP951056516, T2O, T2n);
409 ri[WS(rs, 13)] = FMA(KP951056516, T2Q, T2P);
410 ri[WS(rs, 7)] = FNMS(KP951056516, T2Q, T2P);
411 }
412 }
413 }
414
415 static const tw_instr twinstr[] = {
416 {TW_FULL, 0, 15},
417 {TW_NEXT, 1, 0}
418 };
419
420 static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, {72, 28, 112, 0}, 0, 0, 0 };
421
422 void X(codelet_t1_15) (planner *p) {
423 X(kdft_dit_register) (p, t1_15, &desc);
424 }
425 #else /* HAVE_FMA */
426
427 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include t.h */
428
429 /*
430 * This function contains 184 FP additions, 112 FP multiplications,
431 * (or, 128 additions, 56 multiplications, 56 fused multiply/add),
432 * 65 stack variables, 6 constants, and 60 memory accesses
433 */
434 #include "t.h"
435
436 static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
437 {
438 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
439 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
440 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
441 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
442 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
443 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
444 {
445 INT m;
446 for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) {
447 E T1q, T34, Td, T1n, T2S, T35, T13, T1k, T1l, T2E, T2F, T2O, T1H, T1T, T2k;
448 E T2t, T2f, T2s, T1M, T1U, Tu, TL, TM, T2H, T2I, T2N, T1w, T1Q, T29, T2w;
449 E T24, T2v, T1B, T1R;
450 {
451 E T1, T2R, T6, T1o, Tb, T1p, Tc, T2Q;
452 T1 = ri[0];
453 T2R = ii[0];
454 {
455 E T3, T5, T2, T4;
456 T3 = ri[WS(rs, 5)];
457 T5 = ii[WS(rs, 5)];
458 T2 = W[8];
459 T4 = W[9];
460 T6 = FMA(T2, T3, T4 * T5);
461 T1o = FNMS(T4, T3, T2 * T5);
462 }
463 {
464 E T8, Ta, T7, T9;
465 T8 = ri[WS(rs, 10)];
466 Ta = ii[WS(rs, 10)];
467 T7 = W[18];
468 T9 = W[19];
469 Tb = FMA(T7, T8, T9 * Ta);
470 T1p = FNMS(T9, T8, T7 * Ta);
471 }
472 T1q = KP866025403 * (T1o - T1p);
473 T34 = KP866025403 * (Tb - T6);
474 Tc = T6 + Tb;
475 Td = T1 + Tc;
476 T1n = FNMS(KP500000000, Tc, T1);
477 T2Q = T1o + T1p;
478 T2S = T2Q + T2R;
479 T35 = FNMS(KP500000000, T2Q, T2R);
480 }
481 {
482 E TR, T2c, T18, T2h, TW, T1E, T11, T1F, T12, T2d, T1d, T1J, T1i, T1K, T1j;
483 E T2i;
484 {
485 E TO, TQ, TN, TP;
486 TO = ri[WS(rs, 6)];
487 TQ = ii[WS(rs, 6)];
488 TN = W[10];
489 TP = W[11];
490 TR = FMA(TN, TO, TP * TQ);
491 T2c = FNMS(TP, TO, TN * TQ);
492 }
493 {
494 E T15, T17, T14, T16;
495 T15 = ri[WS(rs, 9)];
496 T17 = ii[WS(rs, 9)];
497 T14 = W[16];
498 T16 = W[17];
499 T18 = FMA(T14, T15, T16 * T17);
500 T2h = FNMS(T16, T15, T14 * T17);
501 }
502 {
503 E TT, TV, TS, TU;
504 TT = ri[WS(rs, 11)];
505 TV = ii[WS(rs, 11)];
506 TS = W[20];
507 TU = W[21];
508 TW = FMA(TS, TT, TU * TV);
509 T1E = FNMS(TU, TT, TS * TV);
510 }
511 {
512 E TY, T10, TX, TZ;
513 TY = ri[WS(rs, 1)];
514 T10 = ii[WS(rs, 1)];
515 TX = W[0];
516 TZ = W[1];
517 T11 = FMA(TX, TY, TZ * T10);
518 T1F = FNMS(TZ, TY, TX * T10);
519 }
520 T12 = TW + T11;
521 T2d = T1E + T1F;
522 {
523 E T1a, T1c, T19, T1b;
524 T1a = ri[WS(rs, 14)];
525 T1c = ii[WS(rs, 14)];
526 T19 = W[26];
527 T1b = W[27];
528 T1d = FMA(T19, T1a, T1b * T1c);
529 T1J = FNMS(T1b, T1a, T19 * T1c);
530 }
531 {
532 E T1f, T1h, T1e, T1g;
533 T1f = ri[WS(rs, 4)];
534 T1h = ii[WS(rs, 4)];
535 T1e = W[6];
536 T1g = W[7];
537 T1i = FMA(T1e, T1f, T1g * T1h);
538 T1K = FNMS(T1g, T1f, T1e * T1h);
539 }
540 T1j = T1d + T1i;
541 T2i = T1J + T1K;
542 {
543 E T1D, T1G, T2g, T2j;
544 T13 = TR + T12;
545 T1k = T18 + T1j;
546 T1l = T13 + T1k;
547 T2E = T2c + T2d;
548 T2F = T2h + T2i;
549 T2O = T2E + T2F;
550 T1D = FNMS(KP500000000, T12, TR);
551 T1G = KP866025403 * (T1E - T1F);
552 T1H = T1D - T1G;
553 T1T = T1D + T1G;
554 T2g = KP866025403 * (T1i - T1d);
555 T2j = FNMS(KP500000000, T2i, T2h);
556 T2k = T2g + T2j;
557 T2t = T2j - T2g;
558 {
559 E T2b, T2e, T1I, T1L;
560 T2b = KP866025403 * (T11 - TW);
561 T2e = FNMS(KP500000000, T2d, T2c);
562 T2f = T2b + T2e;
563 T2s = T2e - T2b;
564 T1I = FNMS(KP500000000, T1j, T18);
565 T1L = KP866025403 * (T1J - T1K);
566 T1M = T1I - T1L;
567 T1U = T1I + T1L;
568 }
569 }
570 }
571 {
572 E Ti, T21, Tz, T26, Tn, T1t, Ts, T1u, Tt, T22, TE, T1y, TJ, T1z, TK;
573 E T27;
574 {
575 E Tf, Th, Te, Tg;
576 Tf = ri[WS(rs, 3)];
577 Th = ii[WS(rs, 3)];
578 Te = W[4];
579 Tg = W[5];
580 Ti = FMA(Te, Tf, Tg * Th);
581 T21 = FNMS(Tg, Tf, Te * Th);
582 }
583 {
584 E Tw, Ty, Tv, Tx;
585 Tw = ri[WS(rs, 12)];
586 Ty = ii[WS(rs, 12)];
587 Tv = W[22];
588 Tx = W[23];
589 Tz = FMA(Tv, Tw, Tx * Ty);
590 T26 = FNMS(Tx, Tw, Tv * Ty);
591 }
592 {
593 E Tk, Tm, Tj, Tl;
594 Tk = ri[WS(rs, 8)];
595 Tm = ii[WS(rs, 8)];
596 Tj = W[14];
597 Tl = W[15];
598 Tn = FMA(Tj, Tk, Tl * Tm);
599 T1t = FNMS(Tl, Tk, Tj * Tm);
600 }
601 {
602 E Tp, Tr, To, Tq;
603 Tp = ri[WS(rs, 13)];
604 Tr = ii[WS(rs, 13)];
605 To = W[24];
606 Tq = W[25];
607 Ts = FMA(To, Tp, Tq * Tr);
608 T1u = FNMS(Tq, Tp, To * Tr);
609 }
610 Tt = Tn + Ts;
611 T22 = T1t + T1u;
612 {
613 E TB, TD, TA, TC;
614 TB = ri[WS(rs, 2)];
615 TD = ii[WS(rs, 2)];
616 TA = W[2];
617 TC = W[3];
618 TE = FMA(TA, TB, TC * TD);
619 T1y = FNMS(TC, TB, TA * TD);
620 }
621 {
622 E TG, TI, TF, TH;
623 TG = ri[WS(rs, 7)];
624 TI = ii[WS(rs, 7)];
625 TF = W[12];
626 TH = W[13];
627 TJ = FMA(TF, TG, TH * TI);
628 T1z = FNMS(TH, TG, TF * TI);
629 }
630 TK = TE + TJ;
631 T27 = T1y + T1z;
632 {
633 E T1s, T1v, T25, T28;
634 Tu = Ti + Tt;
635 TL = Tz + TK;
636 TM = Tu + TL;
637 T2H = T21 + T22;
638 T2I = T26 + T27;
639 T2N = T2H + T2I;
640 T1s = FNMS(KP500000000, Tt, Ti);
641 T1v = KP866025403 * (T1t - T1u);
642 T1w = T1s - T1v;
643 T1Q = T1s + T1v;
644 T25 = KP866025403 * (TJ - TE);
645 T28 = FNMS(KP500000000, T27, T26);
646 T29 = T25 + T28;
647 T2w = T28 - T25;
648 {
649 E T20, T23, T1x, T1A;
650 T20 = KP866025403 * (Ts - Tn);
651 T23 = FNMS(KP500000000, T22, T21);
652 T24 = T20 + T23;
653 T2v = T23 - T20;
654 T1x = FNMS(KP500000000, TK, Tz);
655 T1A = KP866025403 * (T1y - T1z);
656 T1B = T1x - T1A;
657 T1R = T1x + T1A;
658 }
659 }
660 }
661 {
662 E T2C, T1m, T2B, T2K, T2M, T2G, T2J, T2L, T2D;
663 T2C = KP559016994 * (TM - T1l);
664 T1m = TM + T1l;
665 T2B = FNMS(KP250000000, T1m, Td);
666 T2G = T2E - T2F;
667 T2J = T2H - T2I;
668 T2K = FNMS(KP587785252, T2J, KP951056516 * T2G);
669 T2M = FMA(KP951056516, T2J, KP587785252 * T2G);
670 ri[0] = Td + T1m;
671 T2L = T2C + T2B;
672 ri[WS(rs, 9)] = T2L - T2M;
673 ri[WS(rs, 6)] = T2L + T2M;
674 T2D = T2B - T2C;
675 ri[WS(rs, 12)] = T2D - T2K;
676 ri[WS(rs, 3)] = T2D + T2K;
677 }
678 {
679 E T2U, T2P, T2T, T2Y, T30, T2W, T2X, T2Z, T2V;
680 T2U = KP559016994 * (T2N - T2O);
681 T2P = T2N + T2O;
682 T2T = FNMS(KP250000000, T2P, T2S);
683 T2W = T13 - T1k;
684 T2X = Tu - TL;
685 T2Y = FNMS(KP587785252, T2X, KP951056516 * T2W);
686 T30 = FMA(KP951056516, T2X, KP587785252 * T2W);
687 ii[0] = T2P + T2S;
688 T2Z = T2U + T2T;
689 ii[WS(rs, 6)] = T2Z - T30;
690 ii[WS(rs, 9)] = T30 + T2Z;
691 T2V = T2T - T2U;
692 ii[WS(rs, 3)] = T2V - T2Y;
693 ii[WS(rs, 12)] = T2Y + T2V;
694 }
695 {
696 E T2y, T2A, T1r, T1O, T2p, T2q, T2z, T2r;
697 {
698 E T2u, T2x, T1C, T1N;
699 T2u = T2s - T2t;
700 T2x = T2v - T2w;
701 T2y = FNMS(KP587785252, T2x, KP951056516 * T2u);
702 T2A = FMA(KP951056516, T2x, KP587785252 * T2u);
703 T1r = T1n - T1q;
704 T1C = T1w + T1B;
705 T1N = T1H + T1M;
706 T1O = T1C + T1N;
707 T2p = FNMS(KP250000000, T1O, T1r);
708 T2q = KP559016994 * (T1C - T1N);
709 }
710 ri[WS(rs, 5)] = T1r + T1O;
711 T2z = T2q + T2p;
712 ri[WS(rs, 14)] = T2z - T2A;
713 ri[WS(rs, 11)] = T2z + T2A;
714 T2r = T2p - T2q;
715 ri[WS(rs, 2)] = T2r - T2y;
716 ri[WS(rs, 8)] = T2r + T2y;
717 }
718 {
719 E T3h, T3q, T3i, T3l, T3m, T3n, T3p, T3o;
720 {
721 E T3f, T3g, T3j, T3k;
722 T3f = T1H - T1M;
723 T3g = T1w - T1B;
724 T3h = FNMS(KP587785252, T3g, KP951056516 * T3f);
725 T3q = FMA(KP951056516, T3g, KP587785252 * T3f);
726 T3i = T35 - T34;
727 T3j = T2v + T2w;
728 T3k = T2s + T2t;
729 T3l = T3j + T3k;
730 T3m = FNMS(KP250000000, T3l, T3i);
731 T3n = KP559016994 * (T3j - T3k);
732 }
733 ii[WS(rs, 5)] = T3l + T3i;
734 T3p = T3n + T3m;
735 ii[WS(rs, 11)] = T3p - T3q;
736 ii[WS(rs, 14)] = T3q + T3p;
737 T3o = T3m - T3n;
738 ii[WS(rs, 2)] = T3h + T3o;
739 ii[WS(rs, 8)] = T3o - T3h;
740 }
741 {
742 E T3c, T3d, T36, T37, T33, T38, T3e, T39;
743 {
744 E T3a, T3b, T31, T32;
745 T3a = T1Q - T1R;
746 T3b = T1T - T1U;
747 T3c = FMA(KP951056516, T3a, KP587785252 * T3b);
748 T3d = FNMS(KP587785252, T3a, KP951056516 * T3b);
749 T36 = T34 + T35;
750 T31 = T24 + T29;
751 T32 = T2f + T2k;
752 T37 = T31 + T32;
753 T33 = KP559016994 * (T31 - T32);
754 T38 = FNMS(KP250000000, T37, T36);
755 }
756 ii[WS(rs, 10)] = T37 + T36;
757 T3e = T38 - T33;
758 ii[WS(rs, 7)] = T3d + T3e;
759 ii[WS(rs, 13)] = T3e - T3d;
760 T39 = T33 + T38;
761 ii[WS(rs, 1)] = T39 - T3c;
762 ii[WS(rs, 4)] = T3c + T39;
763 }
764 {
765 E T2m, T2o, T1P, T1W, T1X, T1Y, T2n, T1Z;
766 {
767 E T2a, T2l, T1S, T1V;
768 T2a = T24 - T29;
769 T2l = T2f - T2k;
770 T2m = FMA(KP951056516, T2a, KP587785252 * T2l);
771 T2o = FNMS(KP587785252, T2a, KP951056516 * T2l);
772 T1P = T1n + T1q;
773 T1S = T1Q + T1R;
774 T1V = T1T + T1U;
775 T1W = T1S + T1V;
776 T1X = KP559016994 * (T1S - T1V);
777 T1Y = FNMS(KP250000000, T1W, T1P);
778 }
779 ri[WS(rs, 10)] = T1P + T1W;
780 T2n = T1Y - T1X;
781 ri[WS(rs, 7)] = T2n - T2o;
782 ri[WS(rs, 13)] = T2n + T2o;
783 T1Z = T1X + T1Y;
784 ri[WS(rs, 4)] = T1Z - T2m;
785 ri[WS(rs, 1)] = T1Z + T2m;
786 }
787 }
788 }
789 }
790
791 static const tw_instr twinstr[] = {
792 {TW_FULL, 0, 15},
793 {TW_NEXT, 1, 0}
794 };
795
796 static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, {128, 56, 56, 0}, 0, 0, 0 };
797
798 void X(codelet_t1_15) (planner *p) {
799 X(kdft_dit_register) (p, t1_15, &desc);
800 }
801 #endif /* HAVE_FMA */