diff src/fftw-3.3.3/dft/indirect-transpose.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/indirect-transpose.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,234 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* solvers/plans for vectors of DFTs corresponding to the columns
+   of a matrix: first transpose the matrix so that the DFTs are
+   contiguous, then do DFTs with transposed output.   In particular,
+   we restrict ourselves to the case of a square transpose (or a
+   sequence thereof). */
+
+#include "dft.h"
+
+typedef solver S;
+
+typedef struct {
+     plan_dft super;
+     INT vl, ivs, ovs;
+     plan *cldtrans, *cld, *cldrest;
+} P;
+
+/* initial transpose is out-of-place from input to output */
+static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io)
+{
+     const P *ego = (const P *) ego_;
+     INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i;
+
+     for (i = 0; i < vl; ++i) {
+	  {
+	       plan_dft *cldtrans = (plan_dft *) ego->cldtrans;
+	       cldtrans->apply(ego->cldtrans, ri, ii, ro, io);
+	  }
+	  {
+	       plan_dft *cld = (plan_dft *) ego->cld;
+	       cld->apply(ego->cld, ro, io, ro, io);
+	  }
+	  ri += ivs; ii += ivs;
+	  ro += ovs; io += ovs;
+     }
+     {
+	  plan_dft *cldrest = (plan_dft *) ego->cldrest;
+	  cldrest->apply(ego->cldrest, ri, ii, ro, io);
+     }
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(plan_destroy_internal)(ego->cldrest);
+     X(plan_destroy_internal)(ego->cld);
+     X(plan_destroy_internal)(ego->cldtrans);
+}
+
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+     X(plan_awake)(ego->cldtrans, wakefulness);
+     X(plan_awake)(ego->cld, wakefulness);
+     X(plan_awake)(ego->cldrest, wakefulness);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))", 
+	      ego->vl, ego->cldtrans, ego->cld, ego->cldrest);
+}
+
+static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1)
+{
+     int dim0, dim1;
+     *pdim0 = *pdim1 = -1;
+     for (dim0 = 0; dim0 < vs->rnk; ++dim0)
+          for (dim1 = 0; dim1 < s->rnk; ++dim1) 
+	       if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is)
+		   && vs->dims[dim0].n >= s->dims[dim1].n
+		   && (*pdim0 == -1 
+		       || (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is)
+			   && X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) {
+		    *pdim0 = dim0;
+		    *pdim1 = dim1;
+	       }
+     return (*pdim0 != -1 && *pdim1 != -1);
+}
+
+static int applicable0(const solver *ego_, const problem *p_,
+		       const planner *plnr,
+		       int *pdim0, int *pdim1)
+{
+     const problem_dft *p = (const problem_dft *) p_;
+     UNUSED(ego_); UNUSED(plnr);
+
+     return (1
+	     && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk)
+
+	     /* FIXME: can/should we relax this constraint? */
+	     && X(tensor_inplace_strides2)(p->vecsz, p->sz)
+
+	     && pickdim(p->vecsz, p->sz, pdim0, pdim1)
+
+	     /* output should not *already* include the transpose
+		(in which case we duplicate the regular indirect.c) */
+	     && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is)
+	  );
+}
+
+static int applicable(const solver *ego_, const problem *p_,
+		      const planner *plnr,
+		      int *pdim0, int *pdim1)
+{
+     if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0;
+     {
+          const problem_dft *p = (const problem_dft *) p_;
+	  INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1;
+
+	  /* UGLY if does not result in contiguous transforms or
+	     transforms of contiguous vectors (since the latter at
+	     least have efficient transpositions) */
+	  if (NO_UGLYP(plnr)
+	      && p->vecsz->dims[*pdim0].is != u
+	      && !(p->vecsz->rnk == 2
+		   && p->vecsz->dims[1-*pdim0].is == u
+		   && p->vecsz->dims[*pdim0].is
+		      == u * p->vecsz->dims[1-*pdim0].n))
+	       return 0;
+
+	  if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
+     }
+     return 1;
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     const problem_dft *p = (const problem_dft *) p_;
+     P *pln;
+     plan *cld = 0, *cldtrans = 0, *cldrest = 0;
+     int pdim0, pdim1;
+     tensor *ts, *tv;
+     INT vl, ivs, ovs;
+     R *rit, *iit, *rot, *iot;
+
+     static const plan_adt padt = {
+	  X(dft_solve), awake, print, destroy
+     };
+
+     if (!applicable(ego_, p_, plnr, &pdim0, &pdim1))
+          return (plan *) 0;
+
+     vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n;
+     A(vl >= 1);
+     ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is;
+     ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os;
+     rit = TAINT(p->ri, vl == 1 ? 0 : ivs);
+     iit = TAINT(p->ii, vl == 1 ? 0 : ivs);
+     rot = TAINT(p->ro, vl == 1 ? 0 : ovs);
+     iot = TAINT(p->io, vl == 1 ? 0 : ovs);
+
+     ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS);
+     ts->dims[pdim1].os = p->vecsz->dims[pdim0].is;
+     tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS);
+     tv->dims[pdim0].os = p->sz->dims[pdim1].is;
+     tv->dims[pdim0].n = p->sz->dims[pdim1].n;
+     cldtrans = X(mkplan_d)(plnr, 
+			    X(mkproblem_dft_d)(X(mktensor_0d)(),
+					       X(tensor_append)(tv, ts),
+					       rit, iit, 
+					       rot, iot));
+     X(tensor_destroy2)(ts, tv);
+     if (!cldtrans) goto nada;
+
+     ts = X(tensor_copy)(p->sz);
+     ts->dims[pdim1].is = p->vecsz->dims[pdim0].is;
+     tv = X(tensor_copy)(p->vecsz);
+     tv->dims[pdim0].is = p->sz->dims[pdim1].is;
+     tv->dims[pdim0].n = p->sz->dims[pdim1].n;
+     cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv,
+						rot, iot,
+						rot, iot));
+     if (!cld) goto nada;
+
+     tv = X(tensor_copy)(p->vecsz);
+     tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n;
+     cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv,
+						    p->ri + ivs * vl,
+						    p->ii + ivs * vl,
+						    p->ro + ovs * vl,
+						    p->io + ovs * vl));
+     if (!cldrest) goto nada;
+
+     pln = MKPLAN_DFT(P, &padt, apply_op);
+     pln->cldtrans = cldtrans;
+     pln->cld = cld;
+     pln->cldrest = cldrest;
+     pln->vl = vl;
+     pln->ivs = ivs;
+     pln->ovs = ovs;
+     X(ops_cpy)(&cldrest->ops, &pln->super.super.ops);
+     X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops);
+     X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops);
+     return &(pln->super.super);
+
+ nada:
+     X(plan_destroy_internal)(cldrest);
+     X(plan_destroy_internal)(cld);
+     X(plan_destroy_internal)(cldtrans);
+     return (plan *)0;
+}
+
+static solver *mksolver(void)
+{
+     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
+     S *slv = MKSOLVER(S, &sadt);
+     return slv;
+}
+
+void X(dft_indirect_transpose_register)(planner *p)
+{
+     REGISTER_SOLVER(p, mksolver());
+}