Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/indirect-transpose.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/indirect-transpose.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,234 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* solvers/plans for vectors of DFTs corresponding to the columns + of a matrix: first transpose the matrix so that the DFTs are + contiguous, then do DFTs with transposed output. In particular, + we restrict ourselves to the case of a square transpose (or a + sequence thereof). */ + +#include "dft.h" + +typedef solver S; + +typedef struct { + plan_dft super; + INT vl, ivs, ovs; + plan *cldtrans, *cld, *cldrest; +} P; + +/* initial transpose is out-of-place from input to output */ +static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io) +{ + const P *ego = (const P *) ego_; + INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i; + + for (i = 0; i < vl; ++i) { + { + plan_dft *cldtrans = (plan_dft *) ego->cldtrans; + cldtrans->apply(ego->cldtrans, ri, ii, ro, io); + } + { + plan_dft *cld = (plan_dft *) ego->cld; + cld->apply(ego->cld, ro, io, ro, io); + } + ri += ivs; ii += ivs; + ro += ovs; io += ovs; + } + { + plan_dft *cldrest = (plan_dft *) ego->cldrest; + cldrest->apply(ego->cldrest, ri, ii, ro, io); + } +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cldrest); + X(plan_destroy_internal)(ego->cld); + X(plan_destroy_internal)(ego->cldtrans); +} + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + X(plan_awake)(ego->cldtrans, wakefulness); + X(plan_awake)(ego->cld, wakefulness); + X(plan_awake)(ego->cldrest, wakefulness); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))", + ego->vl, ego->cldtrans, ego->cld, ego->cldrest); +} + +static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1) +{ + int dim0, dim1; + *pdim0 = *pdim1 = -1; + for (dim0 = 0; dim0 < vs->rnk; ++dim0) + for (dim1 = 0; dim1 < s->rnk; ++dim1) + if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is) + && vs->dims[dim0].n >= s->dims[dim1].n + && (*pdim0 == -1 + || (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is) + && X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) { + *pdim0 = dim0; + *pdim1 = dim1; + } + return (*pdim0 != -1 && *pdim1 != -1); +} + +static int applicable0(const solver *ego_, const problem *p_, + const planner *plnr, + int *pdim0, int *pdim1) +{ + const problem_dft *p = (const problem_dft *) p_; + UNUSED(ego_); UNUSED(plnr); + + return (1 + && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk) + + /* FIXME: can/should we relax this constraint? */ + && X(tensor_inplace_strides2)(p->vecsz, p->sz) + + && pickdim(p->vecsz, p->sz, pdim0, pdim1) + + /* output should not *already* include the transpose + (in which case we duplicate the regular indirect.c) */ + && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is) + ); +} + +static int applicable(const solver *ego_, const problem *p_, + const planner *plnr, + int *pdim0, int *pdim1) +{ + if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0; + { + const problem_dft *p = (const problem_dft *) p_; + INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1; + + /* UGLY if does not result in contiguous transforms or + transforms of contiguous vectors (since the latter at + least have efficient transpositions) */ + if (NO_UGLYP(plnr) + && p->vecsz->dims[*pdim0].is != u + && !(p->vecsz->rnk == 2 + && p->vecsz->dims[1-*pdim0].is == u + && p->vecsz->dims[*pdim0].is + == u * p->vecsz->dims[1-*pdim0].n)) + return 0; + + if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0; + } + return 1; +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const problem_dft *p = (const problem_dft *) p_; + P *pln; + plan *cld = 0, *cldtrans = 0, *cldrest = 0; + int pdim0, pdim1; + tensor *ts, *tv; + INT vl, ivs, ovs; + R *rit, *iit, *rot, *iot; + + static const plan_adt padt = { + X(dft_solve), awake, print, destroy + }; + + if (!applicable(ego_, p_, plnr, &pdim0, &pdim1)) + return (plan *) 0; + + vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n; + A(vl >= 1); + ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is; + ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os; + rit = TAINT(p->ri, vl == 1 ? 0 : ivs); + iit = TAINT(p->ii, vl == 1 ? 0 : ivs); + rot = TAINT(p->ro, vl == 1 ? 0 : ovs); + iot = TAINT(p->io, vl == 1 ? 0 : ovs); + + ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS); + ts->dims[pdim1].os = p->vecsz->dims[pdim0].is; + tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS); + tv->dims[pdim0].os = p->sz->dims[pdim1].is; + tv->dims[pdim0].n = p->sz->dims[pdim1].n; + cldtrans = X(mkplan_d)(plnr, + X(mkproblem_dft_d)(X(mktensor_0d)(), + X(tensor_append)(tv, ts), + rit, iit, + rot, iot)); + X(tensor_destroy2)(ts, tv); + if (!cldtrans) goto nada; + + ts = X(tensor_copy)(p->sz); + ts->dims[pdim1].is = p->vecsz->dims[pdim0].is; + tv = X(tensor_copy)(p->vecsz); + tv->dims[pdim0].is = p->sz->dims[pdim1].is; + tv->dims[pdim0].n = p->sz->dims[pdim1].n; + cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv, + rot, iot, + rot, iot)); + if (!cld) goto nada; + + tv = X(tensor_copy)(p->vecsz); + tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n; + cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv, + p->ri + ivs * vl, + p->ii + ivs * vl, + p->ro + ovs * vl, + p->io + ovs * vl)); + if (!cldrest) goto nada; + + pln = MKPLAN_DFT(P, &padt, apply_op); + pln->cldtrans = cldtrans; + pln->cld = cld; + pln->cldrest = cldrest; + pln->vl = vl; + pln->ivs = ivs; + pln->ovs = ovs; + X(ops_cpy)(&cldrest->ops, &pln->super.super.ops); + X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops); + X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops); + return &(pln->super.super); + + nada: + X(plan_destroy_internal)(cldrest); + X(plan_destroy_internal)(cld); + X(plan_destroy_internal)(cldtrans); + return (plan *)0; +} + +static solver *mksolver(void) +{ + static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + return slv; +} + +void X(dft_indirect_transpose_register)(planner *p) +{ + REGISTER_SOLVER(p, mksolver()); +}