comparison src/fftw-3.3.3/dft/indirect-transpose.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* solvers/plans for vectors of DFTs corresponding to the columns
22 of a matrix: first transpose the matrix so that the DFTs are
23 contiguous, then do DFTs with transposed output. In particular,
24 we restrict ourselves to the case of a square transpose (or a
25 sequence thereof). */
26
27 #include "dft.h"
28
29 typedef solver S;
30
31 typedef struct {
32 plan_dft super;
33 INT vl, ivs, ovs;
34 plan *cldtrans, *cld, *cldrest;
35 } P;
36
37 /* initial transpose is out-of-place from input to output */
38 static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io)
39 {
40 const P *ego = (const P *) ego_;
41 INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i;
42
43 for (i = 0; i < vl; ++i) {
44 {
45 plan_dft *cldtrans = (plan_dft *) ego->cldtrans;
46 cldtrans->apply(ego->cldtrans, ri, ii, ro, io);
47 }
48 {
49 plan_dft *cld = (plan_dft *) ego->cld;
50 cld->apply(ego->cld, ro, io, ro, io);
51 }
52 ri += ivs; ii += ivs;
53 ro += ovs; io += ovs;
54 }
55 {
56 plan_dft *cldrest = (plan_dft *) ego->cldrest;
57 cldrest->apply(ego->cldrest, ri, ii, ro, io);
58 }
59 }
60
61 static void destroy(plan *ego_)
62 {
63 P *ego = (P *) ego_;
64 X(plan_destroy_internal)(ego->cldrest);
65 X(plan_destroy_internal)(ego->cld);
66 X(plan_destroy_internal)(ego->cldtrans);
67 }
68
69 static void awake(plan *ego_, enum wakefulness wakefulness)
70 {
71 P *ego = (P *) ego_;
72 X(plan_awake)(ego->cldtrans, wakefulness);
73 X(plan_awake)(ego->cld, wakefulness);
74 X(plan_awake)(ego->cldrest, wakefulness);
75 }
76
77 static void print(const plan *ego_, printer *p)
78 {
79 const P *ego = (const P *) ego_;
80 p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))",
81 ego->vl, ego->cldtrans, ego->cld, ego->cldrest);
82 }
83
84 static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1)
85 {
86 int dim0, dim1;
87 *pdim0 = *pdim1 = -1;
88 for (dim0 = 0; dim0 < vs->rnk; ++dim0)
89 for (dim1 = 0; dim1 < s->rnk; ++dim1)
90 if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is)
91 && vs->dims[dim0].n >= s->dims[dim1].n
92 && (*pdim0 == -1
93 || (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is)
94 && X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) {
95 *pdim0 = dim0;
96 *pdim1 = dim1;
97 }
98 return (*pdim0 != -1 && *pdim1 != -1);
99 }
100
101 static int applicable0(const solver *ego_, const problem *p_,
102 const planner *plnr,
103 int *pdim0, int *pdim1)
104 {
105 const problem_dft *p = (const problem_dft *) p_;
106 UNUSED(ego_); UNUSED(plnr);
107
108 return (1
109 && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk)
110
111 /* FIXME: can/should we relax this constraint? */
112 && X(tensor_inplace_strides2)(p->vecsz, p->sz)
113
114 && pickdim(p->vecsz, p->sz, pdim0, pdim1)
115
116 /* output should not *already* include the transpose
117 (in which case we duplicate the regular indirect.c) */
118 && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is)
119 );
120 }
121
122 static int applicable(const solver *ego_, const problem *p_,
123 const planner *plnr,
124 int *pdim0, int *pdim1)
125 {
126 if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0;
127 {
128 const problem_dft *p = (const problem_dft *) p_;
129 INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1;
130
131 /* UGLY if does not result in contiguous transforms or
132 transforms of contiguous vectors (since the latter at
133 least have efficient transpositions) */
134 if (NO_UGLYP(plnr)
135 && p->vecsz->dims[*pdim0].is != u
136 && !(p->vecsz->rnk == 2
137 && p->vecsz->dims[1-*pdim0].is == u
138 && p->vecsz->dims[*pdim0].is
139 == u * p->vecsz->dims[1-*pdim0].n))
140 return 0;
141
142 if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
143 }
144 return 1;
145 }
146
147 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
148 {
149 const problem_dft *p = (const problem_dft *) p_;
150 P *pln;
151 plan *cld = 0, *cldtrans = 0, *cldrest = 0;
152 int pdim0, pdim1;
153 tensor *ts, *tv;
154 INT vl, ivs, ovs;
155 R *rit, *iit, *rot, *iot;
156
157 static const plan_adt padt = {
158 X(dft_solve), awake, print, destroy
159 };
160
161 if (!applicable(ego_, p_, plnr, &pdim0, &pdim1))
162 return (plan *) 0;
163
164 vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n;
165 A(vl >= 1);
166 ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is;
167 ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os;
168 rit = TAINT(p->ri, vl == 1 ? 0 : ivs);
169 iit = TAINT(p->ii, vl == 1 ? 0 : ivs);
170 rot = TAINT(p->ro, vl == 1 ? 0 : ovs);
171 iot = TAINT(p->io, vl == 1 ? 0 : ovs);
172
173 ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS);
174 ts->dims[pdim1].os = p->vecsz->dims[pdim0].is;
175 tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS);
176 tv->dims[pdim0].os = p->sz->dims[pdim1].is;
177 tv->dims[pdim0].n = p->sz->dims[pdim1].n;
178 cldtrans = X(mkplan_d)(plnr,
179 X(mkproblem_dft_d)(X(mktensor_0d)(),
180 X(tensor_append)(tv, ts),
181 rit, iit,
182 rot, iot));
183 X(tensor_destroy2)(ts, tv);
184 if (!cldtrans) goto nada;
185
186 ts = X(tensor_copy)(p->sz);
187 ts->dims[pdim1].is = p->vecsz->dims[pdim0].is;
188 tv = X(tensor_copy)(p->vecsz);
189 tv->dims[pdim0].is = p->sz->dims[pdim1].is;
190 tv->dims[pdim0].n = p->sz->dims[pdim1].n;
191 cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv,
192 rot, iot,
193 rot, iot));
194 if (!cld) goto nada;
195
196 tv = X(tensor_copy)(p->vecsz);
197 tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n;
198 cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv,
199 p->ri + ivs * vl,
200 p->ii + ivs * vl,
201 p->ro + ovs * vl,
202 p->io + ovs * vl));
203 if (!cldrest) goto nada;
204
205 pln = MKPLAN_DFT(P, &padt, apply_op);
206 pln->cldtrans = cldtrans;
207 pln->cld = cld;
208 pln->cldrest = cldrest;
209 pln->vl = vl;
210 pln->ivs = ivs;
211 pln->ovs = ovs;
212 X(ops_cpy)(&cldrest->ops, &pln->super.super.ops);
213 X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops);
214 X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops);
215 return &(pln->super.super);
216
217 nada:
218 X(plan_destroy_internal)(cldrest);
219 X(plan_destroy_internal)(cld);
220 X(plan_destroy_internal)(cldtrans);
221 return (plan *)0;
222 }
223
224 static solver *mksolver(void)
225 {
226 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
227 S *slv = MKSOLVER(S, &sadt);
228 return slv;
229 }
230
231 void X(dft_indirect_transpose_register)(planner *p)
232 {
233 REGISTER_SOLVER(p, mksolver());
234 }