diff src/fftw-3.3.3/dft/dftw-direct.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/dftw-direct.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,332 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+#include "ct.h"
+
+typedef struct {
+     ct_solver super;
+     const ct_desc *desc;
+     int bufferedp;
+     kdftw k;
+} S;
+
+typedef struct {
+     plan_dftw super;
+     kdftw k;
+     INT r;
+     stride rs;
+     INT m, ms, v, vs, mb, me, extra_iter;
+     stride brs;
+     twid *td;
+     const S *slv;
+} P;
+
+
+/*************************************************************
+  Nonbuffered code
+ *************************************************************/
+static void apply(const plan *ego_, R *rio, R *iio)
+{
+     const P *ego = (const P *) ego_;
+     INT i;
+     ASSERT_ALIGNED_DOUBLE;
+     for (i = 0; i < ego->v; ++i, rio += ego->vs, iio += ego->vs) {
+	  INT  mb = ego->mb, ms = ego->ms;
+	  ego->k(rio + mb*ms, iio + mb*ms, ego->td->W, 
+		 ego->rs, mb, ego->me, ms);
+     }
+}
+
+static void apply_extra_iter(const plan *ego_, R *rio, R *iio)
+{
+     const P *ego = (const P *) ego_;
+     INT i, v = ego->v, vs = ego->vs;
+     INT mb = ego->mb, me = ego->me, mm = me - 1, ms = ego->ms;
+     ASSERT_ALIGNED_DOUBLE;
+     for (i = 0; i < v; ++i, rio += vs, iio += vs) {
+	  ego->k(rio + mb*ms, iio + mb*ms, ego->td->W, 
+		 ego->rs, mb, mm, ms);
+	  ego->k(rio + mm*ms, iio + mm*ms, ego->td->W, 
+		 ego->rs, mm, mm+2, 0);
+     }
+}
+
+/*************************************************************
+  Buffered code
+ *************************************************************/
+static void dobatch(const P *ego, R *rA, R *iA, INT mb, INT me, R *buf)
+{
+     INT brs = WS(ego->brs, 1);
+     INT rs = WS(ego->rs, 1);
+     INT ms = ego->ms;
+
+     X(cpy2d_pair_ci)(rA + mb*ms, iA + mb*ms, buf, buf + 1,
+		      ego->r, rs, brs,
+		      me - mb, ms, 2);
+     ego->k(buf, buf + 1, ego->td->W, ego->brs, mb, me, 2);
+     X(cpy2d_pair_co)(buf, buf + 1, rA + mb*ms, iA + mb*ms,
+		      ego->r, brs, rs,
+		      me - mb, 2, ms);
+}
+
+/* must be even for SIMD alignment; should not be 2^k to avoid
+   associativity conflicts */
+static INT compute_batchsize(INT radix)
+{
+     /* round up to multiple of 4 */
+     radix += 3;
+     radix &= -4;
+
+     return (radix + 2);
+}
+
+static void apply_buf(const plan *ego_, R *rio, R *iio)
+{
+     const P *ego = (const P *) ego_;
+     INT i, j, v = ego->v, r = ego->r;
+     INT batchsz = compute_batchsize(r);
+     R *buf;
+     INT mb = ego->mb, me = ego->me;
+     size_t bufsz = r * batchsz * 2 * sizeof(R);
+
+     BUF_ALLOC(R *, buf, bufsz);
+
+     for (i = 0; i < v; ++i, rio += ego->vs, iio += ego->vs) {
+	  for (j = mb; j + batchsz < me; j += batchsz) 
+	       dobatch(ego, rio, iio, j, j + batchsz, buf);
+
+	  dobatch(ego, rio, iio, j, me, buf);
+     }
+
+     BUF_FREE(buf, bufsz);
+}
+
+/*************************************************************
+  common code
+ *************************************************************/
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+
+     X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw,
+		      ego->r * ego->m, ego->r, ego->m + ego->extra_iter);
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(stride_destroy)(ego->brs);
+     X(stride_destroy)(ego->rs);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     const S *slv = ego->slv;
+     const ct_desc *e = slv->desc;
+
+     if (slv->bufferedp)
+	  p->print(p, "(dftw-directbuf/%D-%D/%D%v \"%s\")",
+		   compute_batchsize(ego->r), ego->r,
+		   X(twiddle_length)(ego->r, e->tw), ego->v, e->nam);
+     else
+	  p->print(p, "(dftw-direct-%D/%D%v \"%s\")",
+		   ego->r, X(twiddle_length)(ego->r, e->tw), ego->v, e->nam);
+}
+
+static int applicable0(const S *ego,
+		       INT r, INT irs, INT ors,
+		       INT m, INT ms,
+		       INT v, INT ivs, INT ovs,
+		       INT mb, INT me,
+		       R *rio, R *iio,
+		       const planner *plnr, INT *extra_iter)
+{
+     const ct_desc *e = ego->desc;
+     UNUSED(v);
+
+     return (
+	  1
+	  && r == e->radix
+	  && irs == ors /* in-place along R */
+	  && ivs == ovs /* in-place along V */
+
+	  /* check for alignment/vector length restrictions */
+	  && ((*extra_iter = 0,
+	       e->genus->okp(e, rio, iio, irs, ivs, m, mb, me, ms, plnr))
+	      ||
+	      (*extra_iter = 1,
+	       (1
+		/* FIXME: require full array, otherwise some threads
+		   may be extra_iter and other threads won't be.
+		   Generating the proper twiddle factors is a pain in
+		   this case */
+		&& mb == 0 && me == m
+		&& e->genus->okp(e, rio, iio, irs, ivs,
+				 m, mb, me - 1, ms, plnr)
+		&& e->genus->okp(e, rio, iio, irs, ivs,
+				 m, me - 1, me + 1, ms, plnr))))
+
+	  && (e->genus->okp(e, rio + ivs, iio + ivs, irs, ivs,
+			    m, mb, me - *extra_iter, ms, plnr))
+
+	  );
+}
+
+static int applicable0_buf(const S *ego,
+			   INT r, INT irs, INT ors,
+			   INT m, INT ms,
+			   INT v, INT ivs, INT ovs,
+			   INT mb, INT me,
+			   R *rio, R *iio,
+			   const planner *plnr)
+{
+     const ct_desc *e = ego->desc;
+     INT batchsz;
+     UNUSED(v); UNUSED(ms); UNUSED(rio); UNUSED(iio);
+
+     return (
+	  1
+	  && r == e->radix
+	  && irs == ors /* in-place along R */
+	  && ivs == ovs /* in-place along V */
+
+	  /* check for alignment/vector length restrictions, both for
+	     batchsize and for the remainder */
+	  && (batchsz = compute_batchsize(r), 1)
+	  && (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0,
+			    m, mb, mb + batchsz, 2, plnr))
+	  && (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0,
+			    m, mb, me, 2, plnr))
+	  );
+}
+
+static int applicable(const S *ego,
+		      INT r, INT irs, INT ors,
+		      INT m, INT ms,
+		      INT v, INT ivs, INT ovs,
+		      INT mb, INT me,
+		      R *rio, R *iio,
+		      const planner *plnr, INT *extra_iter)
+{
+     if (ego->bufferedp) {
+	  *extra_iter = 0;
+	  if (!applicable0_buf(ego,
+			       r, irs, ors, m, ms, v, ivs, ovs, mb, me,
+			       rio, iio, plnr))
+	       return 0;
+     } else {
+	  if (!applicable0(ego,
+			   r, irs, ors, m, ms, v, ivs, ovs, mb, me,
+			   rio, iio, plnr, extra_iter))
+	       return 0;
+     }
+
+     if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16),
+				       v, m * r, r))
+	  return 0;
+
+     if (m * r > 262144 && NO_FIXED_RADIX_LARGE_NP(plnr))
+	  return 0;
+
+     return 1;
+}
+
+static plan *mkcldw(const ct_solver *ego_,
+		    INT r, INT irs, INT ors,
+		    INT m, INT ms,
+		    INT v, INT ivs, INT ovs,
+		    INT mstart, INT mcount,
+		    R *rio, R *iio,
+		    planner *plnr)
+{
+     const S *ego = (const S *) ego_;
+     P *pln;
+     const ct_desc *e = ego->desc;
+     INT extra_iter;
+
+     static const plan_adt padt = {
+	  0, awake, print, destroy
+     };
+
+     A(mstart >= 0 && mstart + mcount <= m);
+     if (!applicable(ego,
+		     r, irs, ors, m, ms, v, ivs, ovs, mstart, mstart + mcount,
+		     rio, iio, plnr, &extra_iter))
+          return (plan *)0;
+
+     if (ego->bufferedp) {
+	  pln = MKPLAN_DFTW(P, &padt, apply_buf);
+     } else {
+	  pln = MKPLAN_DFTW(P, &padt, extra_iter ? apply_extra_iter : apply);
+     }
+
+     pln->k = ego->k;
+     pln->rs = X(mkstride)(r, irs);
+     pln->td = 0;
+     pln->r = r;
+     pln->m = m;
+     pln->ms = ms;
+     pln->v = v;
+     pln->vs = ivs;
+     pln->mb = mstart;
+     pln->me = mstart + mcount;
+     pln->slv = ego;
+     pln->brs = X(mkstride)(r, 2 * compute_batchsize(r));
+     pln->extra_iter = extra_iter;
+
+     X(ops_zero)(&pln->super.super.ops);
+     X(ops_madd2)(v * (mcount/e->genus->vl), &e->ops, &pln->super.super.ops);
+
+     if (ego->bufferedp) {
+	  /* 8 load/stores * N * V */
+	  pln->super.super.ops.other += 8 * r * mcount * v;
+     }
+
+     pln->super.super.could_prune_now_p =
+	  (!ego->bufferedp && r >= 5 && r < 64 && m >= r);
+     return &(pln->super.super);
+}
+
+static void regone(planner *plnr, kdftw codelet,
+		   const ct_desc *desc, int dec, int bufferedp)
+{
+     S *slv = (S *)X(mksolver_ct)(sizeof(S), desc->radix, dec, mkcldw, 0);
+     slv->k = codelet;
+     slv->desc = desc;
+     slv->bufferedp = bufferedp;
+     REGISTER_SOLVER(plnr, &(slv->super.super));
+     if (X(mksolver_ct_hook)) {
+	  slv = (S *)X(mksolver_ct_hook)(sizeof(S), desc->radix,
+					 dec, mkcldw, 0);
+	  slv->k = codelet;
+	  slv->desc = desc;
+	  slv->bufferedp = bufferedp;
+	  REGISTER_SOLVER(plnr, &(slv->super.super));
+     }
+}
+
+void X(regsolver_ct_directw)(planner *plnr, kdftw codelet,
+			     const ct_desc *desc, int dec)
+{
+     regone(plnr, codelet, desc, dec, /* bufferedp */ 0);
+     regone(plnr, codelet, desc, dec, /* bufferedp */ 1);
+}