comparison src/fftw-3.3.3/dft/dftw-direct.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22 #include "ct.h"
23
24 typedef struct {
25 ct_solver super;
26 const ct_desc *desc;
27 int bufferedp;
28 kdftw k;
29 } S;
30
31 typedef struct {
32 plan_dftw super;
33 kdftw k;
34 INT r;
35 stride rs;
36 INT m, ms, v, vs, mb, me, extra_iter;
37 stride brs;
38 twid *td;
39 const S *slv;
40 } P;
41
42
43 /*************************************************************
44 Nonbuffered code
45 *************************************************************/
46 static void apply(const plan *ego_, R *rio, R *iio)
47 {
48 const P *ego = (const P *) ego_;
49 INT i;
50 ASSERT_ALIGNED_DOUBLE;
51 for (i = 0; i < ego->v; ++i, rio += ego->vs, iio += ego->vs) {
52 INT mb = ego->mb, ms = ego->ms;
53 ego->k(rio + mb*ms, iio + mb*ms, ego->td->W,
54 ego->rs, mb, ego->me, ms);
55 }
56 }
57
58 static void apply_extra_iter(const plan *ego_, R *rio, R *iio)
59 {
60 const P *ego = (const P *) ego_;
61 INT i, v = ego->v, vs = ego->vs;
62 INT mb = ego->mb, me = ego->me, mm = me - 1, ms = ego->ms;
63 ASSERT_ALIGNED_DOUBLE;
64 for (i = 0; i < v; ++i, rio += vs, iio += vs) {
65 ego->k(rio + mb*ms, iio + mb*ms, ego->td->W,
66 ego->rs, mb, mm, ms);
67 ego->k(rio + mm*ms, iio + mm*ms, ego->td->W,
68 ego->rs, mm, mm+2, 0);
69 }
70 }
71
72 /*************************************************************
73 Buffered code
74 *************************************************************/
75 static void dobatch(const P *ego, R *rA, R *iA, INT mb, INT me, R *buf)
76 {
77 INT brs = WS(ego->brs, 1);
78 INT rs = WS(ego->rs, 1);
79 INT ms = ego->ms;
80
81 X(cpy2d_pair_ci)(rA + mb*ms, iA + mb*ms, buf, buf + 1,
82 ego->r, rs, brs,
83 me - mb, ms, 2);
84 ego->k(buf, buf + 1, ego->td->W, ego->brs, mb, me, 2);
85 X(cpy2d_pair_co)(buf, buf + 1, rA + mb*ms, iA + mb*ms,
86 ego->r, brs, rs,
87 me - mb, 2, ms);
88 }
89
90 /* must be even for SIMD alignment; should not be 2^k to avoid
91 associativity conflicts */
92 static INT compute_batchsize(INT radix)
93 {
94 /* round up to multiple of 4 */
95 radix += 3;
96 radix &= -4;
97
98 return (radix + 2);
99 }
100
101 static void apply_buf(const plan *ego_, R *rio, R *iio)
102 {
103 const P *ego = (const P *) ego_;
104 INT i, j, v = ego->v, r = ego->r;
105 INT batchsz = compute_batchsize(r);
106 R *buf;
107 INT mb = ego->mb, me = ego->me;
108 size_t bufsz = r * batchsz * 2 * sizeof(R);
109
110 BUF_ALLOC(R *, buf, bufsz);
111
112 for (i = 0; i < v; ++i, rio += ego->vs, iio += ego->vs) {
113 for (j = mb; j + batchsz < me; j += batchsz)
114 dobatch(ego, rio, iio, j, j + batchsz, buf);
115
116 dobatch(ego, rio, iio, j, me, buf);
117 }
118
119 BUF_FREE(buf, bufsz);
120 }
121
122 /*************************************************************
123 common code
124 *************************************************************/
125 static void awake(plan *ego_, enum wakefulness wakefulness)
126 {
127 P *ego = (P *) ego_;
128
129 X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw,
130 ego->r * ego->m, ego->r, ego->m + ego->extra_iter);
131 }
132
133 static void destroy(plan *ego_)
134 {
135 P *ego = (P *) ego_;
136 X(stride_destroy)(ego->brs);
137 X(stride_destroy)(ego->rs);
138 }
139
140 static void print(const plan *ego_, printer *p)
141 {
142 const P *ego = (const P *) ego_;
143 const S *slv = ego->slv;
144 const ct_desc *e = slv->desc;
145
146 if (slv->bufferedp)
147 p->print(p, "(dftw-directbuf/%D-%D/%D%v \"%s\")",
148 compute_batchsize(ego->r), ego->r,
149 X(twiddle_length)(ego->r, e->tw), ego->v, e->nam);
150 else
151 p->print(p, "(dftw-direct-%D/%D%v \"%s\")",
152 ego->r, X(twiddle_length)(ego->r, e->tw), ego->v, e->nam);
153 }
154
155 static int applicable0(const S *ego,
156 INT r, INT irs, INT ors,
157 INT m, INT ms,
158 INT v, INT ivs, INT ovs,
159 INT mb, INT me,
160 R *rio, R *iio,
161 const planner *plnr, INT *extra_iter)
162 {
163 const ct_desc *e = ego->desc;
164 UNUSED(v);
165
166 return (
167 1
168 && r == e->radix
169 && irs == ors /* in-place along R */
170 && ivs == ovs /* in-place along V */
171
172 /* check for alignment/vector length restrictions */
173 && ((*extra_iter = 0,
174 e->genus->okp(e, rio, iio, irs, ivs, m, mb, me, ms, plnr))
175 ||
176 (*extra_iter = 1,
177 (1
178 /* FIXME: require full array, otherwise some threads
179 may be extra_iter and other threads won't be.
180 Generating the proper twiddle factors is a pain in
181 this case */
182 && mb == 0 && me == m
183 && e->genus->okp(e, rio, iio, irs, ivs,
184 m, mb, me - 1, ms, plnr)
185 && e->genus->okp(e, rio, iio, irs, ivs,
186 m, me - 1, me + 1, ms, plnr))))
187
188 && (e->genus->okp(e, rio + ivs, iio + ivs, irs, ivs,
189 m, mb, me - *extra_iter, ms, plnr))
190
191 );
192 }
193
194 static int applicable0_buf(const S *ego,
195 INT r, INT irs, INT ors,
196 INT m, INT ms,
197 INT v, INT ivs, INT ovs,
198 INT mb, INT me,
199 R *rio, R *iio,
200 const planner *plnr)
201 {
202 const ct_desc *e = ego->desc;
203 INT batchsz;
204 UNUSED(v); UNUSED(ms); UNUSED(rio); UNUSED(iio);
205
206 return (
207 1
208 && r == e->radix
209 && irs == ors /* in-place along R */
210 && ivs == ovs /* in-place along V */
211
212 /* check for alignment/vector length restrictions, both for
213 batchsize and for the remainder */
214 && (batchsz = compute_batchsize(r), 1)
215 && (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0,
216 m, mb, mb + batchsz, 2, plnr))
217 && (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0,
218 m, mb, me, 2, plnr))
219 );
220 }
221
222 static int applicable(const S *ego,
223 INT r, INT irs, INT ors,
224 INT m, INT ms,
225 INT v, INT ivs, INT ovs,
226 INT mb, INT me,
227 R *rio, R *iio,
228 const planner *plnr, INT *extra_iter)
229 {
230 if (ego->bufferedp) {
231 *extra_iter = 0;
232 if (!applicable0_buf(ego,
233 r, irs, ors, m, ms, v, ivs, ovs, mb, me,
234 rio, iio, plnr))
235 return 0;
236 } else {
237 if (!applicable0(ego,
238 r, irs, ors, m, ms, v, ivs, ovs, mb, me,
239 rio, iio, plnr, extra_iter))
240 return 0;
241 }
242
243 if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16),
244 v, m * r, r))
245 return 0;
246
247 if (m * r > 262144 && NO_FIXED_RADIX_LARGE_NP(plnr))
248 return 0;
249
250 return 1;
251 }
252
253 static plan *mkcldw(const ct_solver *ego_,
254 INT r, INT irs, INT ors,
255 INT m, INT ms,
256 INT v, INT ivs, INT ovs,
257 INT mstart, INT mcount,
258 R *rio, R *iio,
259 planner *plnr)
260 {
261 const S *ego = (const S *) ego_;
262 P *pln;
263 const ct_desc *e = ego->desc;
264 INT extra_iter;
265
266 static const plan_adt padt = {
267 0, awake, print, destroy
268 };
269
270 A(mstart >= 0 && mstart + mcount <= m);
271 if (!applicable(ego,
272 r, irs, ors, m, ms, v, ivs, ovs, mstart, mstart + mcount,
273 rio, iio, plnr, &extra_iter))
274 return (plan *)0;
275
276 if (ego->bufferedp) {
277 pln = MKPLAN_DFTW(P, &padt, apply_buf);
278 } else {
279 pln = MKPLAN_DFTW(P, &padt, extra_iter ? apply_extra_iter : apply);
280 }
281
282 pln->k = ego->k;
283 pln->rs = X(mkstride)(r, irs);
284 pln->td = 0;
285 pln->r = r;
286 pln->m = m;
287 pln->ms = ms;
288 pln->v = v;
289 pln->vs = ivs;
290 pln->mb = mstart;
291 pln->me = mstart + mcount;
292 pln->slv = ego;
293 pln->brs = X(mkstride)(r, 2 * compute_batchsize(r));
294 pln->extra_iter = extra_iter;
295
296 X(ops_zero)(&pln->super.super.ops);
297 X(ops_madd2)(v * (mcount/e->genus->vl), &e->ops, &pln->super.super.ops);
298
299 if (ego->bufferedp) {
300 /* 8 load/stores * N * V */
301 pln->super.super.ops.other += 8 * r * mcount * v;
302 }
303
304 pln->super.super.could_prune_now_p =
305 (!ego->bufferedp && r >= 5 && r < 64 && m >= r);
306 return &(pln->super.super);
307 }
308
309 static void regone(planner *plnr, kdftw codelet,
310 const ct_desc *desc, int dec, int bufferedp)
311 {
312 S *slv = (S *)X(mksolver_ct)(sizeof(S), desc->radix, dec, mkcldw, 0);
313 slv->k = codelet;
314 slv->desc = desc;
315 slv->bufferedp = bufferedp;
316 REGISTER_SOLVER(plnr, &(slv->super.super));
317 if (X(mksolver_ct_hook)) {
318 slv = (S *)X(mksolver_ct_hook)(sizeof(S), desc->radix,
319 dec, mkcldw, 0);
320 slv->k = codelet;
321 slv->desc = desc;
322 slv->bufferedp = bufferedp;
323 REGISTER_SOLVER(plnr, &(slv->super.super));
324 }
325 }
326
327 void X(regsolver_ct_directw)(planner *plnr, kdftw codelet,
328 const ct_desc *desc, int dec)
329 {
330 regone(plnr, codelet, desc, dec, /* bufferedp */ 0);
331 regone(plnr, codelet, desc, dec, /* bufferedp */ 1);
332 }