comparison src/vamp-plugin-sdk-2.5/examples/FixedTempoEstimator.cpp @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents
children
comparison
equal deleted inserted replaced
22:b07fe9e906dc 23:619f715526df
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
2
3 /*
4 Vamp
5
6 An API for audio analysis and feature extraction plugins.
7
8 Centre for Digital Music, Queen Mary, University of London.
9 Copyright 2006-2009 Chris Cannam and QMUL.
10
11 Permission is hereby granted, free of charge, to any person
12 obtaining a copy of this software and associated documentation
13 files (the "Software"), to deal in the Software without
14 restriction, including without limitation the rights to use, copy,
15 modify, merge, publish, distribute, sublicense, and/or sell copies
16 of the Software, and to permit persons to whom the Software is
17 furnished to do so, subject to the following conditions:
18
19 The above copyright notice and this permission notice shall be
20 included in all copies or substantial portions of the Software.
21
22 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
26 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
27 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
28 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29
30 Except as contained in this notice, the names of the Centre for
31 Digital Music; Queen Mary, University of London; and Chris Cannam
32 shall not be used in advertising or otherwise to promote the sale,
33 use or other dealings in this Software without prior written
34 authorization.
35 */
36
37 #include "FixedTempoEstimator.h"
38
39 using std::string;
40 using std::vector;
41 using std::cerr;
42 using std::endl;
43
44 using Vamp::RealTime;
45
46 #include <cmath>
47 #include <cstdio>
48
49
50 class FixedTempoEstimator::D
51 // this class just avoids us having to declare any data members in the header
52 {
53 public:
54 D(float inputSampleRate);
55 ~D();
56
57 size_t getPreferredStepSize() const { return 64; }
58 size_t getPreferredBlockSize() const { return 256; }
59
60 ParameterList getParameterDescriptors() const;
61 float getParameter(string id) const;
62 void setParameter(string id, float value);
63
64 OutputList getOutputDescriptors() const;
65
66 bool initialise(size_t channels, size_t stepSize, size_t blockSize);
67 void reset();
68 FeatureSet process(const float *const *, RealTime);
69 FeatureSet getRemainingFeatures();
70
71 private:
72 void calculate();
73 FeatureSet assembleFeatures();
74
75 float lag2tempo(int);
76 int tempo2lag(float);
77
78 float m_inputSampleRate;
79 size_t m_stepSize;
80 size_t m_blockSize;
81
82 float m_minbpm;
83 float m_maxbpm;
84 float m_maxdflen;
85
86 float *m_priorMagnitudes;
87
88 size_t m_dfsize;
89 float *m_df;
90 float *m_r;
91 float *m_fr;
92 float *m_t;
93 size_t m_n;
94
95 Vamp::RealTime m_start;
96 Vamp::RealTime m_lasttime;
97 };
98
99 FixedTempoEstimator::D::D(float inputSampleRate) :
100 m_inputSampleRate(inputSampleRate),
101 m_stepSize(0),
102 m_blockSize(0),
103 m_minbpm(50),
104 m_maxbpm(190),
105 m_maxdflen(10),
106 m_priorMagnitudes(0),
107 m_df(0),
108 m_r(0),
109 m_fr(0),
110 m_t(0),
111 m_n(0)
112 {
113 }
114
115 FixedTempoEstimator::D::~D()
116 {
117 delete[] m_priorMagnitudes;
118 delete[] m_df;
119 delete[] m_r;
120 delete[] m_fr;
121 delete[] m_t;
122 }
123
124 FixedTempoEstimator::ParameterList
125 FixedTempoEstimator::D::getParameterDescriptors() const
126 {
127 ParameterList list;
128
129 ParameterDescriptor d;
130 d.identifier = "minbpm";
131 d.name = "Minimum estimated tempo";
132 d.description = "Minimum beat-per-minute value which the tempo estimator is able to return";
133 d.unit = "bpm";
134 d.minValue = 10;
135 d.maxValue = 360;
136 d.defaultValue = 50;
137 d.isQuantized = false;
138 list.push_back(d);
139
140 d.identifier = "maxbpm";
141 d.name = "Maximum estimated tempo";
142 d.description = "Maximum beat-per-minute value which the tempo estimator is able to return";
143 d.defaultValue = 190;
144 list.push_back(d);
145
146 d.identifier = "maxdflen";
147 d.name = "Input duration to study";
148 d.description = "Length of audio input, in seconds, which should be taken into account when estimating tempo. There is no need to supply the plugin with any further input once this time has elapsed since the start of the audio. The tempo estimator may use only the first part of this, up to eight times the slowest beat duration: increasing this value further than that is unlikely to improve results.";
149 d.unit = "s";
150 d.minValue = 2;
151 d.maxValue = 40;
152 d.defaultValue = 10;
153 list.push_back(d);
154
155 return list;
156 }
157
158 float
159 FixedTempoEstimator::D::getParameter(string id) const
160 {
161 if (id == "minbpm") {
162 return m_minbpm;
163 } else if (id == "maxbpm") {
164 return m_maxbpm;
165 } else if (id == "maxdflen") {
166 return m_maxdflen;
167 }
168 return 0.f;
169 }
170
171 void
172 FixedTempoEstimator::D::setParameter(string id, float value)
173 {
174 if (id == "minbpm") {
175 m_minbpm = value;
176 } else if (id == "maxbpm") {
177 m_maxbpm = value;
178 } else if (id == "maxdflen") {
179 m_maxdflen = value;
180 }
181 }
182
183 static int TempoOutput = 0;
184 static int CandidatesOutput = 1;
185 static int DFOutput = 2;
186 static int ACFOutput = 3;
187 static int FilteredACFOutput = 4;
188
189 FixedTempoEstimator::OutputList
190 FixedTempoEstimator::D::getOutputDescriptors() const
191 {
192 OutputList list;
193
194 OutputDescriptor d;
195 d.identifier = "tempo";
196 d.name = "Tempo";
197 d.description = "Estimated tempo";
198 d.unit = "bpm";
199 d.hasFixedBinCount = true;
200 d.binCount = 1;
201 d.hasKnownExtents = false;
202 d.isQuantized = false;
203 d.sampleType = OutputDescriptor::VariableSampleRate;
204 d.sampleRate = m_inputSampleRate;
205 d.hasDuration = true; // our returned tempo spans a certain range
206 list.push_back(d);
207
208 d.identifier = "candidates";
209 d.name = "Tempo candidates";
210 d.description = "Possible tempo estimates, one per bin with the most likely in the first bin";
211 d.unit = "bpm";
212 d.hasFixedBinCount = false;
213 list.push_back(d);
214
215 d.identifier = "detectionfunction";
216 d.name = "Detection Function";
217 d.description = "Onset detection function";
218 d.unit = "";
219 d.hasFixedBinCount = 1;
220 d.binCount = 1;
221 d.hasKnownExtents = true;
222 d.minValue = 0.0;
223 d.maxValue = 1.0;
224 d.isQuantized = false;
225 d.quantizeStep = 0.0;
226 d.sampleType = OutputDescriptor::FixedSampleRate;
227 if (m_stepSize) {
228 d.sampleRate = m_inputSampleRate / m_stepSize;
229 } else {
230 d.sampleRate = m_inputSampleRate / (getPreferredBlockSize()/2);
231 }
232 d.hasDuration = false;
233 list.push_back(d);
234
235 d.identifier = "acf";
236 d.name = "Autocorrelation Function";
237 d.description = "Autocorrelation of onset detection function";
238 d.hasKnownExtents = false;
239 d.unit = "r";
240 list.push_back(d);
241
242 d.identifier = "filtered_acf";
243 d.name = "Filtered Autocorrelation";
244 d.description = "Filtered autocorrelation of onset detection function";
245 d.unit = "r";
246 list.push_back(d);
247
248 return list;
249 }
250
251 bool
252 FixedTempoEstimator::D::initialise(size_t, size_t stepSize, size_t blockSize)
253 {
254 m_stepSize = stepSize;
255 m_blockSize = blockSize;
256
257 float dfLengthSecs = m_maxdflen;
258 m_dfsize = (dfLengthSecs * m_inputSampleRate) / m_stepSize;
259
260 m_priorMagnitudes = new float[m_blockSize/2];
261 m_df = new float[m_dfsize];
262
263 for (size_t i = 0; i < m_blockSize/2; ++i) {
264 m_priorMagnitudes[i] = 0.f;
265 }
266 for (size_t i = 0; i < m_dfsize; ++i) {
267 m_df[i] = 0.f;
268 }
269
270 m_n = 0;
271
272 return true;
273 }
274
275 void
276 FixedTempoEstimator::D::reset()
277 {
278 if (!m_priorMagnitudes) return;
279
280 for (size_t i = 0; i < m_blockSize/2; ++i) {
281 m_priorMagnitudes[i] = 0.f;
282 }
283 for (size_t i = 0; i < m_dfsize; ++i) {
284 m_df[i] = 0.f;
285 }
286
287 delete[] m_r;
288 m_r = 0;
289
290 delete[] m_fr;
291 m_fr = 0;
292
293 delete[] m_t;
294 m_t = 0;
295
296 m_n = 0;
297
298 m_start = RealTime::zeroTime;
299 m_lasttime = RealTime::zeroTime;
300 }
301
302 FixedTempoEstimator::FeatureSet
303 FixedTempoEstimator::D::process(const float *const *inputBuffers, RealTime ts)
304 {
305 FeatureSet fs;
306
307 if (m_stepSize == 0) {
308 cerr << "ERROR: FixedTempoEstimator::process: "
309 << "FixedTempoEstimator has not been initialised"
310 << endl;
311 return fs;
312 }
313
314 if (m_n == 0) m_start = ts;
315 m_lasttime = ts;
316
317 if (m_n == m_dfsize) {
318 // If we have seen enough input, do the estimation and return
319 calculate();
320 fs = assembleFeatures();
321 ++m_n;
322 return fs;
323 }
324
325 // If we have seen more than enough, just discard and return!
326 if (m_n > m_dfsize) return FeatureSet();
327
328 float value = 0.f;
329
330 // m_df will contain an onset detection function based on the rise
331 // in overall power from one spectral frame to the next --
332 // simplistic but reasonably effective for our purposes.
333
334 for (size_t i = 1; i < m_blockSize/2; ++i) {
335
336 float real = inputBuffers[0][i*2];
337 float imag = inputBuffers[0][i*2 + 1];
338
339 float sqrmag = real * real + imag * imag;
340 value += fabsf(sqrmag - m_priorMagnitudes[i]);
341
342 m_priorMagnitudes[i] = sqrmag;
343 }
344
345 m_df[m_n] = value;
346
347 ++m_n;
348 return fs;
349 }
350
351 FixedTempoEstimator::FeatureSet
352 FixedTempoEstimator::D::getRemainingFeatures()
353 {
354 FeatureSet fs;
355 if (m_n > m_dfsize) return fs;
356 calculate();
357 fs = assembleFeatures();
358 ++m_n;
359 return fs;
360 }
361
362 float
363 FixedTempoEstimator::D::lag2tempo(int lag)
364 {
365 return 60.f / ((lag * m_stepSize) / m_inputSampleRate);
366 }
367
368 int
369 FixedTempoEstimator::D::tempo2lag(float tempo)
370 {
371 return ((60.f / tempo) * m_inputSampleRate) / m_stepSize;
372 }
373
374 void
375 FixedTempoEstimator::D::calculate()
376 {
377 if (m_r) {
378 cerr << "FixedTempoEstimator::calculate: calculation already happened?" << endl;
379 return;
380 }
381
382 if (m_n < m_dfsize / 9 &&
383 m_n < (1.0 * m_inputSampleRate) / m_stepSize) { // 1 second
384 cerr << "FixedTempoEstimator::calculate: Input is too short" << endl;
385 return;
386 }
387
388 // This function takes m_df (the detection function array filled
389 // out in process()) and calculates m_r (the raw autocorrelation)
390 // and m_fr (the filtered autocorrelation from whose peaks tempo
391 // estimates will be taken).
392
393 int n = m_n; // length of actual df array (m_dfsize is the theoretical max)
394
395 m_r = new float[n/2]; // raw autocorrelation
396 m_fr = new float[n/2]; // filtered autocorrelation
397 m_t = new float[n/2]; // averaged tempo estimate for each lag value
398
399 for (int i = 0; i < n/2; ++i) {
400 m_r[i] = 0.f;
401 m_fr[i] = 0.f;
402 m_t[i] = lag2tempo(i);
403 }
404
405 // Calculate the raw autocorrelation of the detection function
406
407 for (int i = 0; i < n/2; ++i) {
408
409 for (int j = i; j < n; ++j) {
410 m_r[i] += m_df[j] * m_df[j - i];
411 }
412
413 m_r[i] /= n - i - 1;
414 }
415
416 // Filter the autocorrelation and average out the tempo estimates
417
418 float related[] = { 0.5, 2, 4, 8 };
419
420 for (int i = 1; i < n/2-1; ++i) {
421
422 m_fr[i] = m_r[i];
423
424 int div = 1;
425
426 for (int j = 0; j < int(sizeof(related)/sizeof(related[0])); ++j) {
427
428 // Check for an obvious peak at each metrically related lag
429
430 int k0 = int(i * related[j] + 0.5);
431
432 if (k0 >= 0 && k0 < int(n/2)) {
433
434 int kmax = 0, kmin = 0;
435 float kvmax = 0, kvmin = 0;
436 bool have = false;
437
438 for (int k = k0 - 1; k <= k0 + 1; ++k) {
439
440 if (k < 0 || k >= n/2) continue;
441
442 if (!have || (m_r[k] > kvmax)) { kmax = k; kvmax = m_r[k]; }
443 if (!have || (m_r[k] < kvmin)) { kmin = k; kvmin = m_r[k]; }
444
445 have = true;
446 }
447
448 // Boost the original lag according to the strongest
449 // value found close to this related lag
450
451 m_fr[i] += m_r[kmax] / 5;
452
453 if ((kmax == 0 || m_r[kmax] > m_r[kmax-1]) &&
454 (kmax == n/2-1 || m_r[kmax] > m_r[kmax+1]) &&
455 kvmax > kvmin * 1.05) {
456
457 // The strongest value close to the related lag is
458 // also a pretty good looking peak, so use it to
459 // improve our tempo estimate for the original lag
460
461 m_t[i] = m_t[i] + lag2tempo(kmax) * related[j];
462 ++div;
463 }
464 }
465 }
466
467 m_t[i] /= div;
468
469 // Finally apply a primitive perceptual weighting (to prefer
470 // tempi of around 120-130)
471
472 float weight = 1.f - fabsf(128.f - lag2tempo(i)) * 0.005;
473 if (weight < 0.f) weight = 0.f;
474 weight = weight * weight * weight;
475
476 m_fr[i] += m_fr[i] * (weight / 3);
477 }
478 }
479
480 FixedTempoEstimator::FeatureSet
481 FixedTempoEstimator::D::assembleFeatures()
482 {
483 FeatureSet fs;
484 if (!m_r) return fs; // No autocorrelation: no results
485
486 Feature feature;
487 feature.hasTimestamp = true;
488 feature.hasDuration = false;
489 feature.label = "";
490 feature.values.clear();
491 feature.values.push_back(0.f);
492
493 char buffer[40];
494
495 int n = m_n;
496
497 for (int i = 0; i < n; ++i) {
498
499 // Return the detection function in the DF output
500
501 feature.timestamp = m_start +
502 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
503 feature.values[0] = m_df[i];
504 feature.label = "";
505 fs[DFOutput].push_back(feature);
506 }
507
508 for (int i = 1; i < n/2; ++i) {
509
510 // Return the raw autocorrelation in the ACF output, each
511 // value labelled according to its corresponding tempo
512
513 feature.timestamp = m_start +
514 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
515 feature.values[0] = m_r[i];
516 sprintf(buffer, "%.1f bpm", lag2tempo(i));
517 if (i == n/2-1) feature.label = "";
518 else feature.label = buffer;
519 fs[ACFOutput].push_back(feature);
520 }
521
522 float t0 = m_minbpm; // our minimum detected tempo
523 float t1 = m_maxbpm; // our maximum detected tempo
524
525 int p0 = tempo2lag(t1);
526 int p1 = tempo2lag(t0);
527
528 std::map<float, int> candidates;
529
530 for (int i = p0; i <= p1 && i+1 < n/2; ++i) {
531
532 if (m_fr[i] > m_fr[i-1] &&
533 m_fr[i] > m_fr[i+1]) {
534
535 // This is a peak in the filtered autocorrelation: stick
536 // it into the map from filtered autocorrelation to lag
537 // index -- this sorts our peaks by filtered acf value
538
539 candidates[m_fr[i]] = i;
540 }
541
542 // Also return the filtered autocorrelation in its own output
543
544 feature.timestamp = m_start +
545 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
546 feature.values[0] = m_fr[i];
547 sprintf(buffer, "%.1f bpm", lag2tempo(i));
548 if (i == p1 || i == n/2-2) feature.label = "";
549 else feature.label = buffer;
550 fs[FilteredACFOutput].push_back(feature);
551 }
552
553 if (candidates.empty()) {
554 cerr << "No tempo candidates!" << endl;
555 return fs;
556 }
557
558 feature.hasTimestamp = true;
559 feature.timestamp = m_start;
560
561 feature.hasDuration = true;
562 feature.duration = m_lasttime - m_start;
563
564 // The map contains only peaks and is sorted by filtered acf
565 // value, so the final element in it is our "best" tempo guess
566
567 std::map<float, int>::const_iterator ci = candidates.end();
568 --ci;
569 int maxpi = ci->second;
570
571 if (m_t[maxpi] > 0) {
572
573 // This lag has an adjusted tempo from the averaging process:
574 // use it
575
576 feature.values[0] = m_t[maxpi];
577
578 } else {
579
580 // shouldn't happen -- it would imply that this high value was
581 // not a peak!
582
583 feature.values[0] = lag2tempo(maxpi);
584 cerr << "WARNING: No stored tempo for index " << maxpi << endl;
585 }
586
587 sprintf(buffer, "%.1f bpm", feature.values[0]);
588 feature.label = buffer;
589
590 // Return the best tempo in the main output
591
592 fs[TempoOutput].push_back(feature);
593
594 // And return the other estimates (up to the arbitrarily chosen
595 // number of 10 of them) in the candidates output
596
597 feature.values.clear();
598 feature.label = "";
599
600 while (feature.values.size() < 10) {
601 if (m_t[ci->second] > 0) {
602 feature.values.push_back(m_t[ci->second]);
603 } else {
604 feature.values.push_back(lag2tempo(ci->second));
605 }
606 if (ci == candidates.begin()) break;
607 --ci;
608 }
609
610 fs[CandidatesOutput].push_back(feature);
611
612 return fs;
613 }
614
615
616
617 FixedTempoEstimator::FixedTempoEstimator(float inputSampleRate) :
618 Plugin(inputSampleRate),
619 m_d(new D(inputSampleRate))
620 {
621 }
622
623 FixedTempoEstimator::~FixedTempoEstimator()
624 {
625 delete m_d;
626 }
627
628 string
629 FixedTempoEstimator::getIdentifier() const
630 {
631 return "fixedtempo";
632 }
633
634 string
635 FixedTempoEstimator::getName() const
636 {
637 return "Simple Fixed Tempo Estimator";
638 }
639
640 string
641 FixedTempoEstimator::getDescription() const
642 {
643 return "Study a short section of audio and estimate its tempo, assuming the tempo is constant";
644 }
645
646 string
647 FixedTempoEstimator::getMaker() const
648 {
649 return "Vamp SDK Example Plugins";
650 }
651
652 int
653 FixedTempoEstimator::getPluginVersion() const
654 {
655 return 1;
656 }
657
658 string
659 FixedTempoEstimator::getCopyright() const
660 {
661 return "Code copyright 2008 Queen Mary, University of London. Freely redistributable (BSD license)";
662 }
663
664 size_t
665 FixedTempoEstimator::getPreferredStepSize() const
666 {
667 return m_d->getPreferredStepSize();
668 }
669
670 size_t
671 FixedTempoEstimator::getPreferredBlockSize() const
672 {
673 return m_d->getPreferredBlockSize();
674 }
675
676 bool
677 FixedTempoEstimator::initialise(size_t channels, size_t stepSize, size_t blockSize)
678 {
679 if (channels < getMinChannelCount() ||
680 channels > getMaxChannelCount()) return false;
681
682 return m_d->initialise(channels, stepSize, blockSize);
683 }
684
685 void
686 FixedTempoEstimator::reset()
687 {
688 return m_d->reset();
689 }
690
691 FixedTempoEstimator::ParameterList
692 FixedTempoEstimator::getParameterDescriptors() const
693 {
694 return m_d->getParameterDescriptors();
695 }
696
697 float
698 FixedTempoEstimator::getParameter(std::string id) const
699 {
700 return m_d->getParameter(id);
701 }
702
703 void
704 FixedTempoEstimator::setParameter(std::string id, float value)
705 {
706 m_d->setParameter(id, value);
707 }
708
709 FixedTempoEstimator::OutputList
710 FixedTempoEstimator::getOutputDescriptors() const
711 {
712 return m_d->getOutputDescriptors();
713 }
714
715 FixedTempoEstimator::FeatureSet
716 FixedTempoEstimator::process(const float *const *inputBuffers, RealTime ts)
717 {
718 return m_d->process(inputBuffers, ts);
719 }
720
721 FixedTempoEstimator::FeatureSet
722 FixedTempoEstimator::getRemainingFeatures()
723 {
724 return m_d->getRemainingFeatures();
725 }