annotate src/vamp-plugin-sdk-2.5/examples/FixedTempoEstimator.cpp @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents
children
rev   line source
Chris@23 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@23 2
Chris@23 3 /*
Chris@23 4 Vamp
Chris@23 5
Chris@23 6 An API for audio analysis and feature extraction plugins.
Chris@23 7
Chris@23 8 Centre for Digital Music, Queen Mary, University of London.
Chris@23 9 Copyright 2006-2009 Chris Cannam and QMUL.
Chris@23 10
Chris@23 11 Permission is hereby granted, free of charge, to any person
Chris@23 12 obtaining a copy of this software and associated documentation
Chris@23 13 files (the "Software"), to deal in the Software without
Chris@23 14 restriction, including without limitation the rights to use, copy,
Chris@23 15 modify, merge, publish, distribute, sublicense, and/or sell copies
Chris@23 16 of the Software, and to permit persons to whom the Software is
Chris@23 17 furnished to do so, subject to the following conditions:
Chris@23 18
Chris@23 19 The above copyright notice and this permission notice shall be
Chris@23 20 included in all copies or substantial portions of the Software.
Chris@23 21
Chris@23 22 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
Chris@23 23 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
Chris@23 24 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
Chris@23 25 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
Chris@23 26 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
Chris@23 27 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
Chris@23 28 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Chris@23 29
Chris@23 30 Except as contained in this notice, the names of the Centre for
Chris@23 31 Digital Music; Queen Mary, University of London; and Chris Cannam
Chris@23 32 shall not be used in advertising or otherwise to promote the sale,
Chris@23 33 use or other dealings in this Software without prior written
Chris@23 34 authorization.
Chris@23 35 */
Chris@23 36
Chris@23 37 #include "FixedTempoEstimator.h"
Chris@23 38
Chris@23 39 using std::string;
Chris@23 40 using std::vector;
Chris@23 41 using std::cerr;
Chris@23 42 using std::endl;
Chris@23 43
Chris@23 44 using Vamp::RealTime;
Chris@23 45
Chris@23 46 #include <cmath>
Chris@23 47 #include <cstdio>
Chris@23 48
Chris@23 49
Chris@23 50 class FixedTempoEstimator::D
Chris@23 51 // this class just avoids us having to declare any data members in the header
Chris@23 52 {
Chris@23 53 public:
Chris@23 54 D(float inputSampleRate);
Chris@23 55 ~D();
Chris@23 56
Chris@23 57 size_t getPreferredStepSize() const { return 64; }
Chris@23 58 size_t getPreferredBlockSize() const { return 256; }
Chris@23 59
Chris@23 60 ParameterList getParameterDescriptors() const;
Chris@23 61 float getParameter(string id) const;
Chris@23 62 void setParameter(string id, float value);
Chris@23 63
Chris@23 64 OutputList getOutputDescriptors() const;
Chris@23 65
Chris@23 66 bool initialise(size_t channels, size_t stepSize, size_t blockSize);
Chris@23 67 void reset();
Chris@23 68 FeatureSet process(const float *const *, RealTime);
Chris@23 69 FeatureSet getRemainingFeatures();
Chris@23 70
Chris@23 71 private:
Chris@23 72 void calculate();
Chris@23 73 FeatureSet assembleFeatures();
Chris@23 74
Chris@23 75 float lag2tempo(int);
Chris@23 76 int tempo2lag(float);
Chris@23 77
Chris@23 78 float m_inputSampleRate;
Chris@23 79 size_t m_stepSize;
Chris@23 80 size_t m_blockSize;
Chris@23 81
Chris@23 82 float m_minbpm;
Chris@23 83 float m_maxbpm;
Chris@23 84 float m_maxdflen;
Chris@23 85
Chris@23 86 float *m_priorMagnitudes;
Chris@23 87
Chris@23 88 size_t m_dfsize;
Chris@23 89 float *m_df;
Chris@23 90 float *m_r;
Chris@23 91 float *m_fr;
Chris@23 92 float *m_t;
Chris@23 93 size_t m_n;
Chris@23 94
Chris@23 95 Vamp::RealTime m_start;
Chris@23 96 Vamp::RealTime m_lasttime;
Chris@23 97 };
Chris@23 98
Chris@23 99 FixedTempoEstimator::D::D(float inputSampleRate) :
Chris@23 100 m_inputSampleRate(inputSampleRate),
Chris@23 101 m_stepSize(0),
Chris@23 102 m_blockSize(0),
Chris@23 103 m_minbpm(50),
Chris@23 104 m_maxbpm(190),
Chris@23 105 m_maxdflen(10),
Chris@23 106 m_priorMagnitudes(0),
Chris@23 107 m_df(0),
Chris@23 108 m_r(0),
Chris@23 109 m_fr(0),
Chris@23 110 m_t(0),
Chris@23 111 m_n(0)
Chris@23 112 {
Chris@23 113 }
Chris@23 114
Chris@23 115 FixedTempoEstimator::D::~D()
Chris@23 116 {
Chris@23 117 delete[] m_priorMagnitudes;
Chris@23 118 delete[] m_df;
Chris@23 119 delete[] m_r;
Chris@23 120 delete[] m_fr;
Chris@23 121 delete[] m_t;
Chris@23 122 }
Chris@23 123
Chris@23 124 FixedTempoEstimator::ParameterList
Chris@23 125 FixedTempoEstimator::D::getParameterDescriptors() const
Chris@23 126 {
Chris@23 127 ParameterList list;
Chris@23 128
Chris@23 129 ParameterDescriptor d;
Chris@23 130 d.identifier = "minbpm";
Chris@23 131 d.name = "Minimum estimated tempo";
Chris@23 132 d.description = "Minimum beat-per-minute value which the tempo estimator is able to return";
Chris@23 133 d.unit = "bpm";
Chris@23 134 d.minValue = 10;
Chris@23 135 d.maxValue = 360;
Chris@23 136 d.defaultValue = 50;
Chris@23 137 d.isQuantized = false;
Chris@23 138 list.push_back(d);
Chris@23 139
Chris@23 140 d.identifier = "maxbpm";
Chris@23 141 d.name = "Maximum estimated tempo";
Chris@23 142 d.description = "Maximum beat-per-minute value which the tempo estimator is able to return";
Chris@23 143 d.defaultValue = 190;
Chris@23 144 list.push_back(d);
Chris@23 145
Chris@23 146 d.identifier = "maxdflen";
Chris@23 147 d.name = "Input duration to study";
Chris@23 148 d.description = "Length of audio input, in seconds, which should be taken into account when estimating tempo. There is no need to supply the plugin with any further input once this time has elapsed since the start of the audio. The tempo estimator may use only the first part of this, up to eight times the slowest beat duration: increasing this value further than that is unlikely to improve results.";
Chris@23 149 d.unit = "s";
Chris@23 150 d.minValue = 2;
Chris@23 151 d.maxValue = 40;
Chris@23 152 d.defaultValue = 10;
Chris@23 153 list.push_back(d);
Chris@23 154
Chris@23 155 return list;
Chris@23 156 }
Chris@23 157
Chris@23 158 float
Chris@23 159 FixedTempoEstimator::D::getParameter(string id) const
Chris@23 160 {
Chris@23 161 if (id == "minbpm") {
Chris@23 162 return m_minbpm;
Chris@23 163 } else if (id == "maxbpm") {
Chris@23 164 return m_maxbpm;
Chris@23 165 } else if (id == "maxdflen") {
Chris@23 166 return m_maxdflen;
Chris@23 167 }
Chris@23 168 return 0.f;
Chris@23 169 }
Chris@23 170
Chris@23 171 void
Chris@23 172 FixedTempoEstimator::D::setParameter(string id, float value)
Chris@23 173 {
Chris@23 174 if (id == "minbpm") {
Chris@23 175 m_minbpm = value;
Chris@23 176 } else if (id == "maxbpm") {
Chris@23 177 m_maxbpm = value;
Chris@23 178 } else if (id == "maxdflen") {
Chris@23 179 m_maxdflen = value;
Chris@23 180 }
Chris@23 181 }
Chris@23 182
Chris@23 183 static int TempoOutput = 0;
Chris@23 184 static int CandidatesOutput = 1;
Chris@23 185 static int DFOutput = 2;
Chris@23 186 static int ACFOutput = 3;
Chris@23 187 static int FilteredACFOutput = 4;
Chris@23 188
Chris@23 189 FixedTempoEstimator::OutputList
Chris@23 190 FixedTempoEstimator::D::getOutputDescriptors() const
Chris@23 191 {
Chris@23 192 OutputList list;
Chris@23 193
Chris@23 194 OutputDescriptor d;
Chris@23 195 d.identifier = "tempo";
Chris@23 196 d.name = "Tempo";
Chris@23 197 d.description = "Estimated tempo";
Chris@23 198 d.unit = "bpm";
Chris@23 199 d.hasFixedBinCount = true;
Chris@23 200 d.binCount = 1;
Chris@23 201 d.hasKnownExtents = false;
Chris@23 202 d.isQuantized = false;
Chris@23 203 d.sampleType = OutputDescriptor::VariableSampleRate;
Chris@23 204 d.sampleRate = m_inputSampleRate;
Chris@23 205 d.hasDuration = true; // our returned tempo spans a certain range
Chris@23 206 list.push_back(d);
Chris@23 207
Chris@23 208 d.identifier = "candidates";
Chris@23 209 d.name = "Tempo candidates";
Chris@23 210 d.description = "Possible tempo estimates, one per bin with the most likely in the first bin";
Chris@23 211 d.unit = "bpm";
Chris@23 212 d.hasFixedBinCount = false;
Chris@23 213 list.push_back(d);
Chris@23 214
Chris@23 215 d.identifier = "detectionfunction";
Chris@23 216 d.name = "Detection Function";
Chris@23 217 d.description = "Onset detection function";
Chris@23 218 d.unit = "";
Chris@23 219 d.hasFixedBinCount = 1;
Chris@23 220 d.binCount = 1;
Chris@23 221 d.hasKnownExtents = true;
Chris@23 222 d.minValue = 0.0;
Chris@23 223 d.maxValue = 1.0;
Chris@23 224 d.isQuantized = false;
Chris@23 225 d.quantizeStep = 0.0;
Chris@23 226 d.sampleType = OutputDescriptor::FixedSampleRate;
Chris@23 227 if (m_stepSize) {
Chris@23 228 d.sampleRate = m_inputSampleRate / m_stepSize;
Chris@23 229 } else {
Chris@23 230 d.sampleRate = m_inputSampleRate / (getPreferredBlockSize()/2);
Chris@23 231 }
Chris@23 232 d.hasDuration = false;
Chris@23 233 list.push_back(d);
Chris@23 234
Chris@23 235 d.identifier = "acf";
Chris@23 236 d.name = "Autocorrelation Function";
Chris@23 237 d.description = "Autocorrelation of onset detection function";
Chris@23 238 d.hasKnownExtents = false;
Chris@23 239 d.unit = "r";
Chris@23 240 list.push_back(d);
Chris@23 241
Chris@23 242 d.identifier = "filtered_acf";
Chris@23 243 d.name = "Filtered Autocorrelation";
Chris@23 244 d.description = "Filtered autocorrelation of onset detection function";
Chris@23 245 d.unit = "r";
Chris@23 246 list.push_back(d);
Chris@23 247
Chris@23 248 return list;
Chris@23 249 }
Chris@23 250
Chris@23 251 bool
Chris@23 252 FixedTempoEstimator::D::initialise(size_t, size_t stepSize, size_t blockSize)
Chris@23 253 {
Chris@23 254 m_stepSize = stepSize;
Chris@23 255 m_blockSize = blockSize;
Chris@23 256
Chris@23 257 float dfLengthSecs = m_maxdflen;
Chris@23 258 m_dfsize = (dfLengthSecs * m_inputSampleRate) / m_stepSize;
Chris@23 259
Chris@23 260 m_priorMagnitudes = new float[m_blockSize/2];
Chris@23 261 m_df = new float[m_dfsize];
Chris@23 262
Chris@23 263 for (size_t i = 0; i < m_blockSize/2; ++i) {
Chris@23 264 m_priorMagnitudes[i] = 0.f;
Chris@23 265 }
Chris@23 266 for (size_t i = 0; i < m_dfsize; ++i) {
Chris@23 267 m_df[i] = 0.f;
Chris@23 268 }
Chris@23 269
Chris@23 270 m_n = 0;
Chris@23 271
Chris@23 272 return true;
Chris@23 273 }
Chris@23 274
Chris@23 275 void
Chris@23 276 FixedTempoEstimator::D::reset()
Chris@23 277 {
Chris@23 278 if (!m_priorMagnitudes) return;
Chris@23 279
Chris@23 280 for (size_t i = 0; i < m_blockSize/2; ++i) {
Chris@23 281 m_priorMagnitudes[i] = 0.f;
Chris@23 282 }
Chris@23 283 for (size_t i = 0; i < m_dfsize; ++i) {
Chris@23 284 m_df[i] = 0.f;
Chris@23 285 }
Chris@23 286
Chris@23 287 delete[] m_r;
Chris@23 288 m_r = 0;
Chris@23 289
Chris@23 290 delete[] m_fr;
Chris@23 291 m_fr = 0;
Chris@23 292
Chris@23 293 delete[] m_t;
Chris@23 294 m_t = 0;
Chris@23 295
Chris@23 296 m_n = 0;
Chris@23 297
Chris@23 298 m_start = RealTime::zeroTime;
Chris@23 299 m_lasttime = RealTime::zeroTime;
Chris@23 300 }
Chris@23 301
Chris@23 302 FixedTempoEstimator::FeatureSet
Chris@23 303 FixedTempoEstimator::D::process(const float *const *inputBuffers, RealTime ts)
Chris@23 304 {
Chris@23 305 FeatureSet fs;
Chris@23 306
Chris@23 307 if (m_stepSize == 0) {
Chris@23 308 cerr << "ERROR: FixedTempoEstimator::process: "
Chris@23 309 << "FixedTempoEstimator has not been initialised"
Chris@23 310 << endl;
Chris@23 311 return fs;
Chris@23 312 }
Chris@23 313
Chris@23 314 if (m_n == 0) m_start = ts;
Chris@23 315 m_lasttime = ts;
Chris@23 316
Chris@23 317 if (m_n == m_dfsize) {
Chris@23 318 // If we have seen enough input, do the estimation and return
Chris@23 319 calculate();
Chris@23 320 fs = assembleFeatures();
Chris@23 321 ++m_n;
Chris@23 322 return fs;
Chris@23 323 }
Chris@23 324
Chris@23 325 // If we have seen more than enough, just discard and return!
Chris@23 326 if (m_n > m_dfsize) return FeatureSet();
Chris@23 327
Chris@23 328 float value = 0.f;
Chris@23 329
Chris@23 330 // m_df will contain an onset detection function based on the rise
Chris@23 331 // in overall power from one spectral frame to the next --
Chris@23 332 // simplistic but reasonably effective for our purposes.
Chris@23 333
Chris@23 334 for (size_t i = 1; i < m_blockSize/2; ++i) {
Chris@23 335
Chris@23 336 float real = inputBuffers[0][i*2];
Chris@23 337 float imag = inputBuffers[0][i*2 + 1];
Chris@23 338
Chris@23 339 float sqrmag = real * real + imag * imag;
Chris@23 340 value += fabsf(sqrmag - m_priorMagnitudes[i]);
Chris@23 341
Chris@23 342 m_priorMagnitudes[i] = sqrmag;
Chris@23 343 }
Chris@23 344
Chris@23 345 m_df[m_n] = value;
Chris@23 346
Chris@23 347 ++m_n;
Chris@23 348 return fs;
Chris@23 349 }
Chris@23 350
Chris@23 351 FixedTempoEstimator::FeatureSet
Chris@23 352 FixedTempoEstimator::D::getRemainingFeatures()
Chris@23 353 {
Chris@23 354 FeatureSet fs;
Chris@23 355 if (m_n > m_dfsize) return fs;
Chris@23 356 calculate();
Chris@23 357 fs = assembleFeatures();
Chris@23 358 ++m_n;
Chris@23 359 return fs;
Chris@23 360 }
Chris@23 361
Chris@23 362 float
Chris@23 363 FixedTempoEstimator::D::lag2tempo(int lag)
Chris@23 364 {
Chris@23 365 return 60.f / ((lag * m_stepSize) / m_inputSampleRate);
Chris@23 366 }
Chris@23 367
Chris@23 368 int
Chris@23 369 FixedTempoEstimator::D::tempo2lag(float tempo)
Chris@23 370 {
Chris@23 371 return ((60.f / tempo) * m_inputSampleRate) / m_stepSize;
Chris@23 372 }
Chris@23 373
Chris@23 374 void
Chris@23 375 FixedTempoEstimator::D::calculate()
Chris@23 376 {
Chris@23 377 if (m_r) {
Chris@23 378 cerr << "FixedTempoEstimator::calculate: calculation already happened?" << endl;
Chris@23 379 return;
Chris@23 380 }
Chris@23 381
Chris@23 382 if (m_n < m_dfsize / 9 &&
Chris@23 383 m_n < (1.0 * m_inputSampleRate) / m_stepSize) { // 1 second
Chris@23 384 cerr << "FixedTempoEstimator::calculate: Input is too short" << endl;
Chris@23 385 return;
Chris@23 386 }
Chris@23 387
Chris@23 388 // This function takes m_df (the detection function array filled
Chris@23 389 // out in process()) and calculates m_r (the raw autocorrelation)
Chris@23 390 // and m_fr (the filtered autocorrelation from whose peaks tempo
Chris@23 391 // estimates will be taken).
Chris@23 392
Chris@23 393 int n = m_n; // length of actual df array (m_dfsize is the theoretical max)
Chris@23 394
Chris@23 395 m_r = new float[n/2]; // raw autocorrelation
Chris@23 396 m_fr = new float[n/2]; // filtered autocorrelation
Chris@23 397 m_t = new float[n/2]; // averaged tempo estimate for each lag value
Chris@23 398
Chris@23 399 for (int i = 0; i < n/2; ++i) {
Chris@23 400 m_r[i] = 0.f;
Chris@23 401 m_fr[i] = 0.f;
Chris@23 402 m_t[i] = lag2tempo(i);
Chris@23 403 }
Chris@23 404
Chris@23 405 // Calculate the raw autocorrelation of the detection function
Chris@23 406
Chris@23 407 for (int i = 0; i < n/2; ++i) {
Chris@23 408
Chris@23 409 for (int j = i; j < n; ++j) {
Chris@23 410 m_r[i] += m_df[j] * m_df[j - i];
Chris@23 411 }
Chris@23 412
Chris@23 413 m_r[i] /= n - i - 1;
Chris@23 414 }
Chris@23 415
Chris@23 416 // Filter the autocorrelation and average out the tempo estimates
Chris@23 417
Chris@23 418 float related[] = { 0.5, 2, 4, 8 };
Chris@23 419
Chris@23 420 for (int i = 1; i < n/2-1; ++i) {
Chris@23 421
Chris@23 422 m_fr[i] = m_r[i];
Chris@23 423
Chris@23 424 int div = 1;
Chris@23 425
Chris@23 426 for (int j = 0; j < int(sizeof(related)/sizeof(related[0])); ++j) {
Chris@23 427
Chris@23 428 // Check for an obvious peak at each metrically related lag
Chris@23 429
Chris@23 430 int k0 = int(i * related[j] + 0.5);
Chris@23 431
Chris@23 432 if (k0 >= 0 && k0 < int(n/2)) {
Chris@23 433
Chris@23 434 int kmax = 0, kmin = 0;
Chris@23 435 float kvmax = 0, kvmin = 0;
Chris@23 436 bool have = false;
Chris@23 437
Chris@23 438 for (int k = k0 - 1; k <= k0 + 1; ++k) {
Chris@23 439
Chris@23 440 if (k < 0 || k >= n/2) continue;
Chris@23 441
Chris@23 442 if (!have || (m_r[k] > kvmax)) { kmax = k; kvmax = m_r[k]; }
Chris@23 443 if (!have || (m_r[k] < kvmin)) { kmin = k; kvmin = m_r[k]; }
Chris@23 444
Chris@23 445 have = true;
Chris@23 446 }
Chris@23 447
Chris@23 448 // Boost the original lag according to the strongest
Chris@23 449 // value found close to this related lag
Chris@23 450
Chris@23 451 m_fr[i] += m_r[kmax] / 5;
Chris@23 452
Chris@23 453 if ((kmax == 0 || m_r[kmax] > m_r[kmax-1]) &&
Chris@23 454 (kmax == n/2-1 || m_r[kmax] > m_r[kmax+1]) &&
Chris@23 455 kvmax > kvmin * 1.05) {
Chris@23 456
Chris@23 457 // The strongest value close to the related lag is
Chris@23 458 // also a pretty good looking peak, so use it to
Chris@23 459 // improve our tempo estimate for the original lag
Chris@23 460
Chris@23 461 m_t[i] = m_t[i] + lag2tempo(kmax) * related[j];
Chris@23 462 ++div;
Chris@23 463 }
Chris@23 464 }
Chris@23 465 }
Chris@23 466
Chris@23 467 m_t[i] /= div;
Chris@23 468
Chris@23 469 // Finally apply a primitive perceptual weighting (to prefer
Chris@23 470 // tempi of around 120-130)
Chris@23 471
Chris@23 472 float weight = 1.f - fabsf(128.f - lag2tempo(i)) * 0.005;
Chris@23 473 if (weight < 0.f) weight = 0.f;
Chris@23 474 weight = weight * weight * weight;
Chris@23 475
Chris@23 476 m_fr[i] += m_fr[i] * (weight / 3);
Chris@23 477 }
Chris@23 478 }
Chris@23 479
Chris@23 480 FixedTempoEstimator::FeatureSet
Chris@23 481 FixedTempoEstimator::D::assembleFeatures()
Chris@23 482 {
Chris@23 483 FeatureSet fs;
Chris@23 484 if (!m_r) return fs; // No autocorrelation: no results
Chris@23 485
Chris@23 486 Feature feature;
Chris@23 487 feature.hasTimestamp = true;
Chris@23 488 feature.hasDuration = false;
Chris@23 489 feature.label = "";
Chris@23 490 feature.values.clear();
Chris@23 491 feature.values.push_back(0.f);
Chris@23 492
Chris@23 493 char buffer[40];
Chris@23 494
Chris@23 495 int n = m_n;
Chris@23 496
Chris@23 497 for (int i = 0; i < n; ++i) {
Chris@23 498
Chris@23 499 // Return the detection function in the DF output
Chris@23 500
Chris@23 501 feature.timestamp = m_start +
Chris@23 502 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
Chris@23 503 feature.values[0] = m_df[i];
Chris@23 504 feature.label = "";
Chris@23 505 fs[DFOutput].push_back(feature);
Chris@23 506 }
Chris@23 507
Chris@23 508 for (int i = 1; i < n/2; ++i) {
Chris@23 509
Chris@23 510 // Return the raw autocorrelation in the ACF output, each
Chris@23 511 // value labelled according to its corresponding tempo
Chris@23 512
Chris@23 513 feature.timestamp = m_start +
Chris@23 514 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
Chris@23 515 feature.values[0] = m_r[i];
Chris@23 516 sprintf(buffer, "%.1f bpm", lag2tempo(i));
Chris@23 517 if (i == n/2-1) feature.label = "";
Chris@23 518 else feature.label = buffer;
Chris@23 519 fs[ACFOutput].push_back(feature);
Chris@23 520 }
Chris@23 521
Chris@23 522 float t0 = m_minbpm; // our minimum detected tempo
Chris@23 523 float t1 = m_maxbpm; // our maximum detected tempo
Chris@23 524
Chris@23 525 int p0 = tempo2lag(t1);
Chris@23 526 int p1 = tempo2lag(t0);
Chris@23 527
Chris@23 528 std::map<float, int> candidates;
Chris@23 529
Chris@23 530 for (int i = p0; i <= p1 && i+1 < n/2; ++i) {
Chris@23 531
Chris@23 532 if (m_fr[i] > m_fr[i-1] &&
Chris@23 533 m_fr[i] > m_fr[i+1]) {
Chris@23 534
Chris@23 535 // This is a peak in the filtered autocorrelation: stick
Chris@23 536 // it into the map from filtered autocorrelation to lag
Chris@23 537 // index -- this sorts our peaks by filtered acf value
Chris@23 538
Chris@23 539 candidates[m_fr[i]] = i;
Chris@23 540 }
Chris@23 541
Chris@23 542 // Also return the filtered autocorrelation in its own output
Chris@23 543
Chris@23 544 feature.timestamp = m_start +
Chris@23 545 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
Chris@23 546 feature.values[0] = m_fr[i];
Chris@23 547 sprintf(buffer, "%.1f bpm", lag2tempo(i));
Chris@23 548 if (i == p1 || i == n/2-2) feature.label = "";
Chris@23 549 else feature.label = buffer;
Chris@23 550 fs[FilteredACFOutput].push_back(feature);
Chris@23 551 }
Chris@23 552
Chris@23 553 if (candidates.empty()) {
Chris@23 554 cerr << "No tempo candidates!" << endl;
Chris@23 555 return fs;
Chris@23 556 }
Chris@23 557
Chris@23 558 feature.hasTimestamp = true;
Chris@23 559 feature.timestamp = m_start;
Chris@23 560
Chris@23 561 feature.hasDuration = true;
Chris@23 562 feature.duration = m_lasttime - m_start;
Chris@23 563
Chris@23 564 // The map contains only peaks and is sorted by filtered acf
Chris@23 565 // value, so the final element in it is our "best" tempo guess
Chris@23 566
Chris@23 567 std::map<float, int>::const_iterator ci = candidates.end();
Chris@23 568 --ci;
Chris@23 569 int maxpi = ci->second;
Chris@23 570
Chris@23 571 if (m_t[maxpi] > 0) {
Chris@23 572
Chris@23 573 // This lag has an adjusted tempo from the averaging process:
Chris@23 574 // use it
Chris@23 575
Chris@23 576 feature.values[0] = m_t[maxpi];
Chris@23 577
Chris@23 578 } else {
Chris@23 579
Chris@23 580 // shouldn't happen -- it would imply that this high value was
Chris@23 581 // not a peak!
Chris@23 582
Chris@23 583 feature.values[0] = lag2tempo(maxpi);
Chris@23 584 cerr << "WARNING: No stored tempo for index " << maxpi << endl;
Chris@23 585 }
Chris@23 586
Chris@23 587 sprintf(buffer, "%.1f bpm", feature.values[0]);
Chris@23 588 feature.label = buffer;
Chris@23 589
Chris@23 590 // Return the best tempo in the main output
Chris@23 591
Chris@23 592 fs[TempoOutput].push_back(feature);
Chris@23 593
Chris@23 594 // And return the other estimates (up to the arbitrarily chosen
Chris@23 595 // number of 10 of them) in the candidates output
Chris@23 596
Chris@23 597 feature.values.clear();
Chris@23 598 feature.label = "";
Chris@23 599
Chris@23 600 while (feature.values.size() < 10) {
Chris@23 601 if (m_t[ci->second] > 0) {
Chris@23 602 feature.values.push_back(m_t[ci->second]);
Chris@23 603 } else {
Chris@23 604 feature.values.push_back(lag2tempo(ci->second));
Chris@23 605 }
Chris@23 606 if (ci == candidates.begin()) break;
Chris@23 607 --ci;
Chris@23 608 }
Chris@23 609
Chris@23 610 fs[CandidatesOutput].push_back(feature);
Chris@23 611
Chris@23 612 return fs;
Chris@23 613 }
Chris@23 614
Chris@23 615
Chris@23 616
Chris@23 617 FixedTempoEstimator::FixedTempoEstimator(float inputSampleRate) :
Chris@23 618 Plugin(inputSampleRate),
Chris@23 619 m_d(new D(inputSampleRate))
Chris@23 620 {
Chris@23 621 }
Chris@23 622
Chris@23 623 FixedTempoEstimator::~FixedTempoEstimator()
Chris@23 624 {
Chris@23 625 delete m_d;
Chris@23 626 }
Chris@23 627
Chris@23 628 string
Chris@23 629 FixedTempoEstimator::getIdentifier() const
Chris@23 630 {
Chris@23 631 return "fixedtempo";
Chris@23 632 }
Chris@23 633
Chris@23 634 string
Chris@23 635 FixedTempoEstimator::getName() const
Chris@23 636 {
Chris@23 637 return "Simple Fixed Tempo Estimator";
Chris@23 638 }
Chris@23 639
Chris@23 640 string
Chris@23 641 FixedTempoEstimator::getDescription() const
Chris@23 642 {
Chris@23 643 return "Study a short section of audio and estimate its tempo, assuming the tempo is constant";
Chris@23 644 }
Chris@23 645
Chris@23 646 string
Chris@23 647 FixedTempoEstimator::getMaker() const
Chris@23 648 {
Chris@23 649 return "Vamp SDK Example Plugins";
Chris@23 650 }
Chris@23 651
Chris@23 652 int
Chris@23 653 FixedTempoEstimator::getPluginVersion() const
Chris@23 654 {
Chris@23 655 return 1;
Chris@23 656 }
Chris@23 657
Chris@23 658 string
Chris@23 659 FixedTempoEstimator::getCopyright() const
Chris@23 660 {
Chris@23 661 return "Code copyright 2008 Queen Mary, University of London. Freely redistributable (BSD license)";
Chris@23 662 }
Chris@23 663
Chris@23 664 size_t
Chris@23 665 FixedTempoEstimator::getPreferredStepSize() const
Chris@23 666 {
Chris@23 667 return m_d->getPreferredStepSize();
Chris@23 668 }
Chris@23 669
Chris@23 670 size_t
Chris@23 671 FixedTempoEstimator::getPreferredBlockSize() const
Chris@23 672 {
Chris@23 673 return m_d->getPreferredBlockSize();
Chris@23 674 }
Chris@23 675
Chris@23 676 bool
Chris@23 677 FixedTempoEstimator::initialise(size_t channels, size_t stepSize, size_t blockSize)
Chris@23 678 {
Chris@23 679 if (channels < getMinChannelCount() ||
Chris@23 680 channels > getMaxChannelCount()) return false;
Chris@23 681
Chris@23 682 return m_d->initialise(channels, stepSize, blockSize);
Chris@23 683 }
Chris@23 684
Chris@23 685 void
Chris@23 686 FixedTempoEstimator::reset()
Chris@23 687 {
Chris@23 688 return m_d->reset();
Chris@23 689 }
Chris@23 690
Chris@23 691 FixedTempoEstimator::ParameterList
Chris@23 692 FixedTempoEstimator::getParameterDescriptors() const
Chris@23 693 {
Chris@23 694 return m_d->getParameterDescriptors();
Chris@23 695 }
Chris@23 696
Chris@23 697 float
Chris@23 698 FixedTempoEstimator::getParameter(std::string id) const
Chris@23 699 {
Chris@23 700 return m_d->getParameter(id);
Chris@23 701 }
Chris@23 702
Chris@23 703 void
Chris@23 704 FixedTempoEstimator::setParameter(std::string id, float value)
Chris@23 705 {
Chris@23 706 m_d->setParameter(id, value);
Chris@23 707 }
Chris@23 708
Chris@23 709 FixedTempoEstimator::OutputList
Chris@23 710 FixedTempoEstimator::getOutputDescriptors() const
Chris@23 711 {
Chris@23 712 return m_d->getOutputDescriptors();
Chris@23 713 }
Chris@23 714
Chris@23 715 FixedTempoEstimator::FeatureSet
Chris@23 716 FixedTempoEstimator::process(const float *const *inputBuffers, RealTime ts)
Chris@23 717 {
Chris@23 718 return m_d->process(inputBuffers, ts);
Chris@23 719 }
Chris@23 720
Chris@23 721 FixedTempoEstimator::FeatureSet
Chris@23 722 FixedTempoEstimator::getRemainingFeatures()
Chris@23 723 {
Chris@23 724 return m_d->getRemainingFeatures();
Chris@23 725 }