Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t1fv_15.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:38:04 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1fv_15 -include t1f.h */ | |
29 | |
30 /* | |
31 * This function contains 92 FP additions, 77 FP multiplications, | |
32 * (or, 50 additions, 35 multiplications, 42 fused multiply/add), | |
33 * 81 stack variables, 8 constants, and 30 memory accesses | |
34 */ | |
35 #include "t1f.h" | |
36 | |
37 static void t1fv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291); | |
41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
47 { | |
48 INT m; | |
49 R *x; | |
50 x = ri; | |
51 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) { | |
52 V Tq, Ty, Th, T1b, T10, Ts, TP, T7, Tu, TA, TC, Tj, Tk, TQ, Tf; | |
53 { | |
54 V T1, T4, T2, T9, Te; | |
55 T1 = LD(&(x[0]), ms, &(x[0])); | |
56 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
57 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
58 { | |
59 V T8, Tp, Tx, Tg; | |
60 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
61 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
62 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
63 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
64 { | |
65 V Tb, Td, Tr, T6, Tt, Tz, TB, Ti; | |
66 { | |
67 V T5, T3, Ta, Tc; | |
68 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
69 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
70 T5 = BYTWJ(&(W[TWVL * 18]), T4); | |
71 T3 = BYTWJ(&(W[TWVL * 8]), T2); | |
72 T9 = BYTWJ(&(W[TWVL * 4]), T8); | |
73 Tq = BYTWJ(&(W[TWVL * 10]), Tp); | |
74 Ty = BYTWJ(&(W[TWVL * 16]), Tx); | |
75 Th = BYTWJ(&(W[TWVL * 22]), Tg); | |
76 Tb = BYTWJ(&(W[TWVL * 14]), Ta); | |
77 Td = BYTWJ(&(W[TWVL * 24]), Tc); | |
78 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
79 T1b = VSUB(T5, T3); | |
80 T6 = VADD(T3, T5); | |
81 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
82 } | |
83 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
84 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
85 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
86 Te = VADD(Tb, Td); | |
87 T10 = VSUB(Td, Tb); | |
88 Ts = BYTWJ(&(W[TWVL * 20]), Tr); | |
89 TP = VFNMS(LDK(KP500000000), T6, T1); | |
90 T7 = VADD(T1, T6); | |
91 Tu = BYTWJ(&(W[0]), Tt); | |
92 TA = BYTWJ(&(W[TWVL * 26]), Tz); | |
93 TC = BYTWJ(&(W[TWVL * 6]), TB); | |
94 Tj = BYTWJ(&(W[TWVL * 2]), Ti); | |
95 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
96 } | |
97 } | |
98 TQ = VFNMS(LDK(KP500000000), Te, T9); | |
99 Tf = VADD(T9, Te); | |
100 } | |
101 { | |
102 V Tv, T13, TD, T14, Tl; | |
103 Tv = VADD(Ts, Tu); | |
104 T13 = VSUB(Tu, Ts); | |
105 TD = VADD(TA, TC); | |
106 T14 = VSUB(TC, TA); | |
107 Tl = BYTWJ(&(W[TWVL * 12]), Tk); | |
108 { | |
109 V TT, Tw, T1d, T15, TU, TE, T11, Tm; | |
110 TT = VFNMS(LDK(KP500000000), Tv, Tq); | |
111 Tw = VADD(Tq, Tv); | |
112 T1d = VADD(T13, T14); | |
113 T15 = VSUB(T13, T14); | |
114 TU = VFNMS(LDK(KP500000000), TD, Ty); | |
115 TE = VADD(Ty, TD); | |
116 T11 = VSUB(Tl, Tj); | |
117 Tm = VADD(Tj, Tl); | |
118 { | |
119 V T19, TV, TK, TF, T1c, T12, TR, Tn; | |
120 T19 = VSUB(TT, TU); | |
121 TV = VADD(TT, TU); | |
122 TK = VSUB(Tw, TE); | |
123 TF = VADD(Tw, TE); | |
124 T1c = VADD(T10, T11); | |
125 T12 = VSUB(T10, T11); | |
126 TR = VFNMS(LDK(KP500000000), Tm, Th); | |
127 Tn = VADD(Th, Tm); | |
128 { | |
129 V T1g, T1e, T1m, T16, T18, TS, TL, To, T1f, T1u; | |
130 T1g = VSUB(T1c, T1d); | |
131 T1e = VADD(T1c, T1d); | |
132 T1m = VFNMS(LDK(KP618033988), T12, T15); | |
133 T16 = VFMA(LDK(KP618033988), T15, T12); | |
134 T18 = VSUB(TQ, TR); | |
135 TS = VADD(TQ, TR); | |
136 TL = VSUB(Tf, Tn); | |
137 To = VADD(Tf, Tn); | |
138 T1f = VFNMS(LDK(KP250000000), T1e, T1b); | |
139 T1u = VMUL(LDK(KP866025403), VADD(T1b, T1e)); | |
140 { | |
141 V T1o, T1a, TY, TO, TM, TG, TI, T1p, T1h, T1t, TX, TW; | |
142 T1o = VFNMS(LDK(KP618033988), T18, T19); | |
143 T1a = VFMA(LDK(KP618033988), T19, T18); | |
144 TW = VADD(TS, TV); | |
145 TY = VSUB(TS, TV); | |
146 TO = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TK, TL)); | |
147 TM = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TL, TK)); | |
148 TG = VADD(To, TF); | |
149 TI = VSUB(To, TF); | |
150 T1p = VFNMS(LDK(KP559016994), T1g, T1f); | |
151 T1h = VFMA(LDK(KP559016994), T1g, T1f); | |
152 T1t = VADD(TP, TW); | |
153 TX = VFNMS(LDK(KP250000000), TW, TP); | |
154 { | |
155 V T1q, T1s, T1k, T1i, T1l, TZ, TJ, TN, TH; | |
156 ST(&(x[0]), VADD(T7, TG), ms, &(x[0])); | |
157 TH = VFNMS(LDK(KP250000000), TG, T7); | |
158 T1q = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1p, T1o)); | |
159 T1s = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1p, T1o)); | |
160 T1k = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1h, T1a)); | |
161 T1i = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1h, T1a)); | |
162 ST(&(x[WS(rs, 10)]), VFMAI(T1u, T1t), ms, &(x[0])); | |
163 ST(&(x[WS(rs, 5)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)])); | |
164 T1l = VFNMS(LDK(KP559016994), TY, TX); | |
165 TZ = VFMA(LDK(KP559016994), TY, TX); | |
166 TJ = VFNMS(LDK(KP559016994), TI, TH); | |
167 TN = VFMA(LDK(KP559016994), TI, TH); | |
168 { | |
169 V T1n, T1r, T1j, T17; | |
170 T1n = VFMA(LDK(KP823639103), T1m, T1l); | |
171 T1r = VFNMS(LDK(KP823639103), T1m, T1l); | |
172 T1j = VFNMS(LDK(KP823639103), T16, TZ); | |
173 T17 = VFMA(LDK(KP823639103), T16, TZ); | |
174 ST(&(x[WS(rs, 12)]), VFMAI(TM, TJ), ms, &(x[0])); | |
175 ST(&(x[WS(rs, 3)]), VFNMSI(TM, TJ), ms, &(x[WS(rs, 1)])); | |
176 ST(&(x[WS(rs, 9)]), VFMAI(TO, TN), ms, &(x[WS(rs, 1)])); | |
177 ST(&(x[WS(rs, 6)]), VFNMSI(TO, TN), ms, &(x[0])); | |
178 ST(&(x[WS(rs, 2)]), VFMAI(T1q, T1n), ms, &(x[0])); | |
179 ST(&(x[WS(rs, 13)]), VFNMSI(T1q, T1n), ms, &(x[WS(rs, 1)])); | |
180 ST(&(x[WS(rs, 7)]), VFMAI(T1s, T1r), ms, &(x[WS(rs, 1)])); | |
181 ST(&(x[WS(rs, 8)]), VFNMSI(T1s, T1r), ms, &(x[0])); | |
182 ST(&(x[WS(rs, 4)]), VFMAI(T1k, T1j), ms, &(x[0])); | |
183 ST(&(x[WS(rs, 11)]), VFNMSI(T1k, T1j), ms, &(x[WS(rs, 1)])); | |
184 ST(&(x[WS(rs, 14)]), VFMAI(T1i, T17), ms, &(x[0])); | |
185 ST(&(x[WS(rs, 1)]), VFNMSI(T1i, T17), ms, &(x[WS(rs, 1)])); | |
186 } | |
187 } | |
188 } | |
189 } | |
190 } | |
191 } | |
192 } | |
193 } | |
194 } | |
195 VLEAVE(); | |
196 } | |
197 | |
198 static const tw_instr twinstr[] = { | |
199 VTW(0, 1), | |
200 VTW(0, 2), | |
201 VTW(0, 3), | |
202 VTW(0, 4), | |
203 VTW(0, 5), | |
204 VTW(0, 6), | |
205 VTW(0, 7), | |
206 VTW(0, 8), | |
207 VTW(0, 9), | |
208 VTW(0, 10), | |
209 VTW(0, 11), | |
210 VTW(0, 12), | |
211 VTW(0, 13), | |
212 VTW(0, 14), | |
213 {TW_NEXT, VL, 0} | |
214 }; | |
215 | |
216 static const ct_desc desc = { 15, XSIMD_STRING("t1fv_15"), twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 }; | |
217 | |
218 void XSIMD(codelet_t1fv_15) (planner *p) { | |
219 X(kdft_dit_register) (p, t1fv_15, &desc); | |
220 } | |
221 #else /* HAVE_FMA */ | |
222 | |
223 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1fv_15 -include t1f.h */ | |
224 | |
225 /* | |
226 * This function contains 92 FP additions, 53 FP multiplications, | |
227 * (or, 78 additions, 39 multiplications, 14 fused multiply/add), | |
228 * 52 stack variables, 10 constants, and 30 memory accesses | |
229 */ | |
230 #include "t1f.h" | |
231 | |
232 static void t1fv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
233 { | |
234 DVK(KP216506350, +0.216506350946109661690930792688234045867850657); | |
235 DVK(KP484122918, +0.484122918275927110647408174972799951354115213); | |
236 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
237 DVK(KP509036960, +0.509036960455127183450980863393907648510733164); | |
238 DVK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
239 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
240 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
241 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
242 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
243 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
244 { | |
245 INT m; | |
246 R *x; | |
247 x = ri; | |
248 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) { | |
249 V T1e, T7, TP, T12, T15, Tf, Tn, To, T1b, T1c, T1f, TQ, TR, TS, Tw; | |
250 V TE, TF, TT, TU, TV; | |
251 { | |
252 V T1, T5, T3, T4, T2, T6; | |
253 T1 = LD(&(x[0]), ms, &(x[0])); | |
254 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
255 T5 = BYTWJ(&(W[TWVL * 18]), T4); | |
256 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
257 T3 = BYTWJ(&(W[TWVL * 8]), T2); | |
258 T1e = VSUB(T5, T3); | |
259 T6 = VADD(T3, T5); | |
260 T7 = VADD(T1, T6); | |
261 TP = VFNMS(LDK(KP500000000), T6, T1); | |
262 } | |
263 { | |
264 V T9, Tq, Ty, Th, Te, T13, Tv, T10, TD, T11, Tm, T14; | |
265 { | |
266 V T8, Tp, Tx, Tg; | |
267 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
268 T9 = BYTWJ(&(W[TWVL * 4]), T8); | |
269 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
270 Tq = BYTWJ(&(W[TWVL * 10]), Tp); | |
271 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
272 Ty = BYTWJ(&(W[TWVL * 16]), Tx); | |
273 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
274 Th = BYTWJ(&(W[TWVL * 22]), Tg); | |
275 } | |
276 { | |
277 V Tb, Td, Ta, Tc; | |
278 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
279 Tb = BYTWJ(&(W[TWVL * 14]), Ta); | |
280 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
281 Td = BYTWJ(&(W[TWVL * 24]), Tc); | |
282 Te = VADD(Tb, Td); | |
283 T13 = VSUB(Td, Tb); | |
284 } | |
285 { | |
286 V Ts, Tu, Tr, Tt; | |
287 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
288 Ts = BYTWJ(&(W[TWVL * 20]), Tr); | |
289 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
290 Tu = BYTWJ(&(W[0]), Tt); | |
291 Tv = VADD(Ts, Tu); | |
292 T10 = VSUB(Tu, Ts); | |
293 } | |
294 { | |
295 V TA, TC, Tz, TB; | |
296 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
297 TA = BYTWJ(&(W[TWVL * 26]), Tz); | |
298 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
299 TC = BYTWJ(&(W[TWVL * 6]), TB); | |
300 TD = VADD(TA, TC); | |
301 T11 = VSUB(TC, TA); | |
302 } | |
303 { | |
304 V Tj, Tl, Ti, Tk; | |
305 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
306 Tj = BYTWJ(&(W[TWVL * 2]), Ti); | |
307 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
308 Tl = BYTWJ(&(W[TWVL * 12]), Tk); | |
309 Tm = VADD(Tj, Tl); | |
310 T14 = VSUB(Tl, Tj); | |
311 } | |
312 T12 = VSUB(T10, T11); | |
313 T15 = VSUB(T13, T14); | |
314 Tf = VADD(T9, Te); | |
315 Tn = VADD(Th, Tm); | |
316 To = VADD(Tf, Tn); | |
317 T1b = VADD(T13, T14); | |
318 T1c = VADD(T10, T11); | |
319 T1f = VADD(T1b, T1c); | |
320 TQ = VFNMS(LDK(KP500000000), Te, T9); | |
321 TR = VFNMS(LDK(KP500000000), Tm, Th); | |
322 TS = VADD(TQ, TR); | |
323 Tw = VADD(Tq, Tv); | |
324 TE = VADD(Ty, TD); | |
325 TF = VADD(Tw, TE); | |
326 TT = VFNMS(LDK(KP500000000), Tv, Tq); | |
327 TU = VFNMS(LDK(KP500000000), TD, Ty); | |
328 TV = VADD(TT, TU); | |
329 } | |
330 { | |
331 V TI, TG, TH, TM, TO, TK, TL, TN, TJ; | |
332 TI = VMUL(LDK(KP559016994), VSUB(To, TF)); | |
333 TG = VADD(To, TF); | |
334 TH = VFNMS(LDK(KP250000000), TG, T7); | |
335 TK = VSUB(Tw, TE); | |
336 TL = VSUB(Tf, Tn); | |
337 TM = VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TK))); | |
338 TO = VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TK))); | |
339 ST(&(x[0]), VADD(T7, TG), ms, &(x[0])); | |
340 TN = VADD(TI, TH); | |
341 ST(&(x[WS(rs, 6)]), VSUB(TN, TO), ms, &(x[0])); | |
342 ST(&(x[WS(rs, 9)]), VADD(TO, TN), ms, &(x[WS(rs, 1)])); | |
343 TJ = VSUB(TH, TI); | |
344 ST(&(x[WS(rs, 3)]), VSUB(TJ, TM), ms, &(x[WS(rs, 1)])); | |
345 ST(&(x[WS(rs, 12)]), VADD(TM, TJ), ms, &(x[0])); | |
346 } | |
347 { | |
348 V T16, T1m, T1u, T1h, T1o, T1a, T1p, TZ, T1t, T1l, T1d, T1g; | |
349 T16 = VFNMS(LDK(KP509036960), T15, VMUL(LDK(KP823639103), T12)); | |
350 T1m = VFMA(LDK(KP823639103), T15, VMUL(LDK(KP509036960), T12)); | |
351 T1u = VBYI(VMUL(LDK(KP866025403), VADD(T1e, T1f))); | |
352 T1d = VMUL(LDK(KP484122918), VSUB(T1b, T1c)); | |
353 T1g = VFNMS(LDK(KP216506350), T1f, VMUL(LDK(KP866025403), T1e)); | |
354 T1h = VSUB(T1d, T1g); | |
355 T1o = VADD(T1d, T1g); | |
356 { | |
357 V T18, T19, TY, TW, TX; | |
358 T18 = VSUB(TT, TU); | |
359 T19 = VSUB(TQ, TR); | |
360 T1a = VFNMS(LDK(KP587785252), T19, VMUL(LDK(KP951056516), T18)); | |
361 T1p = VFMA(LDK(KP951056516), T19, VMUL(LDK(KP587785252), T18)); | |
362 TY = VMUL(LDK(KP559016994), VSUB(TS, TV)); | |
363 TW = VADD(TS, TV); | |
364 TX = VFNMS(LDK(KP250000000), TW, TP); | |
365 TZ = VSUB(TX, TY); | |
366 T1t = VADD(TP, TW); | |
367 T1l = VADD(TY, TX); | |
368 } | |
369 { | |
370 V T17, T1i, T1r, T1s; | |
371 ST(&(x[WS(rs, 5)]), VSUB(T1t, T1u), ms, &(x[WS(rs, 1)])); | |
372 ST(&(x[WS(rs, 10)]), VADD(T1t, T1u), ms, &(x[0])); | |
373 T17 = VSUB(TZ, T16); | |
374 T1i = VBYI(VSUB(T1a, T1h)); | |
375 ST(&(x[WS(rs, 8)]), VSUB(T17, T1i), ms, &(x[0])); | |
376 ST(&(x[WS(rs, 7)]), VADD(T17, T1i), ms, &(x[WS(rs, 1)])); | |
377 T1r = VSUB(T1l, T1m); | |
378 T1s = VBYI(VADD(T1p, T1o)); | |
379 ST(&(x[WS(rs, 11)]), VSUB(T1r, T1s), ms, &(x[WS(rs, 1)])); | |
380 ST(&(x[WS(rs, 4)]), VADD(T1r, T1s), ms, &(x[0])); | |
381 { | |
382 V T1n, T1q, T1j, T1k; | |
383 T1n = VADD(T1l, T1m); | |
384 T1q = VBYI(VSUB(T1o, T1p)); | |
385 ST(&(x[WS(rs, 14)]), VSUB(T1n, T1q), ms, &(x[0])); | |
386 ST(&(x[WS(rs, 1)]), VADD(T1n, T1q), ms, &(x[WS(rs, 1)])); | |
387 T1j = VADD(TZ, T16); | |
388 T1k = VBYI(VADD(T1a, T1h)); | |
389 ST(&(x[WS(rs, 13)]), VSUB(T1j, T1k), ms, &(x[WS(rs, 1)])); | |
390 ST(&(x[WS(rs, 2)]), VADD(T1j, T1k), ms, &(x[0])); | |
391 } | |
392 } | |
393 } | |
394 } | |
395 } | |
396 VLEAVE(); | |
397 } | |
398 | |
399 static const tw_instr twinstr[] = { | |
400 VTW(0, 1), | |
401 VTW(0, 2), | |
402 VTW(0, 3), | |
403 VTW(0, 4), | |
404 VTW(0, 5), | |
405 VTW(0, 6), | |
406 VTW(0, 7), | |
407 VTW(0, 8), | |
408 VTW(0, 9), | |
409 VTW(0, 10), | |
410 VTW(0, 11), | |
411 VTW(0, 12), | |
412 VTW(0, 13), | |
413 VTW(0, 14), | |
414 {TW_NEXT, VL, 0} | |
415 }; | |
416 | |
417 static const ct_desc desc = { 15, XSIMD_STRING("t1fv_15"), twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 }; | |
418 | |
419 void XSIMD(codelet_t1fv_15) (planner *p) { | |
420 X(kdft_dit_register) (p, t1fv_15, &desc); | |
421 } | |
422 #endif /* HAVE_FMA */ |