Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t1fv_15.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t1fv_15.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,422 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:38:04 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1fv_15 -include t1f.h */ + +/* + * This function contains 92 FP additions, 77 FP multiplications, + * (or, 50 additions, 35 multiplications, 42 fused multiply/add), + * 81 stack variables, 8 constants, and 30 memory accesses + */ +#include "t1f.h" + +static void t1fv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP823639103, +0.823639103546331925877420039278190003029660514); + DVK(KP910592997, +0.910592997310029334643087372129977886038870291); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP618033988, +0.618033988749894848204586834365638117720309180); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) { + V Tq, Ty, Th, T1b, T10, Ts, TP, T7, Tu, TA, TC, Tj, Tk, TQ, Tf; + { + V T1, T4, T2, T9, Te; + T1 = LD(&(x[0]), ms, &(x[0])); + T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + { + V T8, Tp, Tx, Tg; + T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + { + V Tb, Td, Tr, T6, Tt, Tz, TB, Ti; + { + V T5, T3, Ta, Tc; + Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + T5 = BYTWJ(&(W[TWVL * 18]), T4); + T3 = BYTWJ(&(W[TWVL * 8]), T2); + T9 = BYTWJ(&(W[TWVL * 4]), T8); + Tq = BYTWJ(&(W[TWVL * 10]), Tp); + Ty = BYTWJ(&(W[TWVL * 16]), Tx); + Th = BYTWJ(&(W[TWVL * 22]), Tg); + Tb = BYTWJ(&(W[TWVL * 14]), Ta); + Td = BYTWJ(&(W[TWVL * 24]), Tc); + Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + T1b = VSUB(T5, T3); + T6 = VADD(T3, T5); + Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + } + Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + TB = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Te = VADD(Tb, Td); + T10 = VSUB(Td, Tb); + Ts = BYTWJ(&(W[TWVL * 20]), Tr); + TP = VFNMS(LDK(KP500000000), T6, T1); + T7 = VADD(T1, T6); + Tu = BYTWJ(&(W[0]), Tt); + TA = BYTWJ(&(W[TWVL * 26]), Tz); + TC = BYTWJ(&(W[TWVL * 6]), TB); + Tj = BYTWJ(&(W[TWVL * 2]), Ti); + Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + } + } + TQ = VFNMS(LDK(KP500000000), Te, T9); + Tf = VADD(T9, Te); + } + { + V Tv, T13, TD, T14, Tl; + Tv = VADD(Ts, Tu); + T13 = VSUB(Tu, Ts); + TD = VADD(TA, TC); + T14 = VSUB(TC, TA); + Tl = BYTWJ(&(W[TWVL * 12]), Tk); + { + V TT, Tw, T1d, T15, TU, TE, T11, Tm; + TT = VFNMS(LDK(KP500000000), Tv, Tq); + Tw = VADD(Tq, Tv); + T1d = VADD(T13, T14); + T15 = VSUB(T13, T14); + TU = VFNMS(LDK(KP500000000), TD, Ty); + TE = VADD(Ty, TD); + T11 = VSUB(Tl, Tj); + Tm = VADD(Tj, Tl); + { + V T19, TV, TK, TF, T1c, T12, TR, Tn; + T19 = VSUB(TT, TU); + TV = VADD(TT, TU); + TK = VSUB(Tw, TE); + TF = VADD(Tw, TE); + T1c = VADD(T10, T11); + T12 = VSUB(T10, T11); + TR = VFNMS(LDK(KP500000000), Tm, Th); + Tn = VADD(Th, Tm); + { + V T1g, T1e, T1m, T16, T18, TS, TL, To, T1f, T1u; + T1g = VSUB(T1c, T1d); + T1e = VADD(T1c, T1d); + T1m = VFNMS(LDK(KP618033988), T12, T15); + T16 = VFMA(LDK(KP618033988), T15, T12); + T18 = VSUB(TQ, TR); + TS = VADD(TQ, TR); + TL = VSUB(Tf, Tn); + To = VADD(Tf, Tn); + T1f = VFNMS(LDK(KP250000000), T1e, T1b); + T1u = VMUL(LDK(KP866025403), VADD(T1b, T1e)); + { + V T1o, T1a, TY, TO, TM, TG, TI, T1p, T1h, T1t, TX, TW; + T1o = VFNMS(LDK(KP618033988), T18, T19); + T1a = VFMA(LDK(KP618033988), T19, T18); + TW = VADD(TS, TV); + TY = VSUB(TS, TV); + TO = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TK, TL)); + TM = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TL, TK)); + TG = VADD(To, TF); + TI = VSUB(To, TF); + T1p = VFNMS(LDK(KP559016994), T1g, T1f); + T1h = VFMA(LDK(KP559016994), T1g, T1f); + T1t = VADD(TP, TW); + TX = VFNMS(LDK(KP250000000), TW, TP); + { + V T1q, T1s, T1k, T1i, T1l, TZ, TJ, TN, TH; + ST(&(x[0]), VADD(T7, TG), ms, &(x[0])); + TH = VFNMS(LDK(KP250000000), TG, T7); + T1q = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1p, T1o)); + T1s = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1p, T1o)); + T1k = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1h, T1a)); + T1i = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1h, T1a)); + ST(&(x[WS(rs, 10)]), VFMAI(T1u, T1t), ms, &(x[0])); + ST(&(x[WS(rs, 5)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)])); + T1l = VFNMS(LDK(KP559016994), TY, TX); + TZ = VFMA(LDK(KP559016994), TY, TX); + TJ = VFNMS(LDK(KP559016994), TI, TH); + TN = VFMA(LDK(KP559016994), TI, TH); + { + V T1n, T1r, T1j, T17; + T1n = VFMA(LDK(KP823639103), T1m, T1l); + T1r = VFNMS(LDK(KP823639103), T1m, T1l); + T1j = VFNMS(LDK(KP823639103), T16, TZ); + T17 = VFMA(LDK(KP823639103), T16, TZ); + ST(&(x[WS(rs, 12)]), VFMAI(TM, TJ), ms, &(x[0])); + ST(&(x[WS(rs, 3)]), VFNMSI(TM, TJ), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VFMAI(TO, TN), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 6)]), VFNMSI(TO, TN), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFMAI(T1q, T1n), ms, &(x[0])); + ST(&(x[WS(rs, 13)]), VFNMSI(T1q, T1n), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFMAI(T1s, T1r), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 8)]), VFNMSI(T1s, T1r), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VFMAI(T1k, T1j), ms, &(x[0])); + ST(&(x[WS(rs, 11)]), VFNMSI(T1k, T1j), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 14)]), VFMAI(T1i, T17), ms, &(x[0])); + ST(&(x[WS(rs, 1)]), VFNMSI(T1i, T17), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + VTW(0, 10), + VTW(0, 11), + VTW(0, 12), + VTW(0, 13), + VTW(0, 14), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 15, XSIMD_STRING("t1fv_15"), twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1fv_15) (planner *p) { + X(kdft_dit_register) (p, t1fv_15, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1fv_15 -include t1f.h */ + +/* + * This function contains 92 FP additions, 53 FP multiplications, + * (or, 78 additions, 39 multiplications, 14 fused multiply/add), + * 52 stack variables, 10 constants, and 30 memory accesses + */ +#include "t1f.h" + +static void t1fv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP216506350, +0.216506350946109661690930792688234045867850657); + DVK(KP484122918, +0.484122918275927110647408174972799951354115213); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP509036960, +0.509036960455127183450980863393907648510733164); + DVK(KP823639103, +0.823639103546331925877420039278190003029660514); + DVK(KP587785252, +0.587785252292473129168705954639072768597652438); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) { + V T1e, T7, TP, T12, T15, Tf, Tn, To, T1b, T1c, T1f, TQ, TR, TS, Tw; + V TE, TF, TT, TU, TV; + { + V T1, T5, T3, T4, T2, T6; + T1 = LD(&(x[0]), ms, &(x[0])); + T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + T5 = BYTWJ(&(W[TWVL * 18]), T4); + T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + T3 = BYTWJ(&(W[TWVL * 8]), T2); + T1e = VSUB(T5, T3); + T6 = VADD(T3, T5); + T7 = VADD(T1, T6); + TP = VFNMS(LDK(KP500000000), T6, T1); + } + { + V T9, Tq, Ty, Th, Te, T13, Tv, T10, TD, T11, Tm, T14; + { + V T8, Tp, Tx, Tg; + T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T9 = BYTWJ(&(W[TWVL * 4]), T8); + Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Tq = BYTWJ(&(W[TWVL * 10]), Tp); + Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Ty = BYTWJ(&(W[TWVL * 16]), Tx); + Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + Th = BYTWJ(&(W[TWVL * 22]), Tg); + } + { + V Tb, Td, Ta, Tc; + Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Tb = BYTWJ(&(W[TWVL * 14]), Ta); + Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + Td = BYTWJ(&(W[TWVL * 24]), Tc); + Te = VADD(Tb, Td); + T13 = VSUB(Td, Tb); + } + { + V Ts, Tu, Tr, Tt; + Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Ts = BYTWJ(&(W[TWVL * 20]), Tr); + Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tu = BYTWJ(&(W[0]), Tt); + Tv = VADD(Ts, Tu); + T10 = VSUB(Tu, Ts); + } + { + V TA, TC, Tz, TB; + Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + TA = BYTWJ(&(W[TWVL * 26]), Tz); + TB = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + TC = BYTWJ(&(W[TWVL * 6]), TB); + TD = VADD(TA, TC); + T11 = VSUB(TC, TA); + } + { + V Tj, Tl, Ti, Tk; + Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Tj = BYTWJ(&(W[TWVL * 2]), Ti); + Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Tl = BYTWJ(&(W[TWVL * 12]), Tk); + Tm = VADD(Tj, Tl); + T14 = VSUB(Tl, Tj); + } + T12 = VSUB(T10, T11); + T15 = VSUB(T13, T14); + Tf = VADD(T9, Te); + Tn = VADD(Th, Tm); + To = VADD(Tf, Tn); + T1b = VADD(T13, T14); + T1c = VADD(T10, T11); + T1f = VADD(T1b, T1c); + TQ = VFNMS(LDK(KP500000000), Te, T9); + TR = VFNMS(LDK(KP500000000), Tm, Th); + TS = VADD(TQ, TR); + Tw = VADD(Tq, Tv); + TE = VADD(Ty, TD); + TF = VADD(Tw, TE); + TT = VFNMS(LDK(KP500000000), Tv, Tq); + TU = VFNMS(LDK(KP500000000), TD, Ty); + TV = VADD(TT, TU); + } + { + V TI, TG, TH, TM, TO, TK, TL, TN, TJ; + TI = VMUL(LDK(KP559016994), VSUB(To, TF)); + TG = VADD(To, TF); + TH = VFNMS(LDK(KP250000000), TG, T7); + TK = VSUB(Tw, TE); + TL = VSUB(Tf, Tn); + TM = VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TK))); + TO = VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TK))); + ST(&(x[0]), VADD(T7, TG), ms, &(x[0])); + TN = VADD(TI, TH); + ST(&(x[WS(rs, 6)]), VSUB(TN, TO), ms, &(x[0])); + ST(&(x[WS(rs, 9)]), VADD(TO, TN), ms, &(x[WS(rs, 1)])); + TJ = VSUB(TH, TI); + ST(&(x[WS(rs, 3)]), VSUB(TJ, TM), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 12)]), VADD(TM, TJ), ms, &(x[0])); + } + { + V T16, T1m, T1u, T1h, T1o, T1a, T1p, TZ, T1t, T1l, T1d, T1g; + T16 = VFNMS(LDK(KP509036960), T15, VMUL(LDK(KP823639103), T12)); + T1m = VFMA(LDK(KP823639103), T15, VMUL(LDK(KP509036960), T12)); + T1u = VBYI(VMUL(LDK(KP866025403), VADD(T1e, T1f))); + T1d = VMUL(LDK(KP484122918), VSUB(T1b, T1c)); + T1g = VFNMS(LDK(KP216506350), T1f, VMUL(LDK(KP866025403), T1e)); + T1h = VSUB(T1d, T1g); + T1o = VADD(T1d, T1g); + { + V T18, T19, TY, TW, TX; + T18 = VSUB(TT, TU); + T19 = VSUB(TQ, TR); + T1a = VFNMS(LDK(KP587785252), T19, VMUL(LDK(KP951056516), T18)); + T1p = VFMA(LDK(KP951056516), T19, VMUL(LDK(KP587785252), T18)); + TY = VMUL(LDK(KP559016994), VSUB(TS, TV)); + TW = VADD(TS, TV); + TX = VFNMS(LDK(KP250000000), TW, TP); + TZ = VSUB(TX, TY); + T1t = VADD(TP, TW); + T1l = VADD(TY, TX); + } + { + V T17, T1i, T1r, T1s; + ST(&(x[WS(rs, 5)]), VSUB(T1t, T1u), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 10)]), VADD(T1t, T1u), ms, &(x[0])); + T17 = VSUB(TZ, T16); + T1i = VBYI(VSUB(T1a, T1h)); + ST(&(x[WS(rs, 8)]), VSUB(T17, T1i), ms, &(x[0])); + ST(&(x[WS(rs, 7)]), VADD(T17, T1i), ms, &(x[WS(rs, 1)])); + T1r = VSUB(T1l, T1m); + T1s = VBYI(VADD(T1p, T1o)); + ST(&(x[WS(rs, 11)]), VSUB(T1r, T1s), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 4)]), VADD(T1r, T1s), ms, &(x[0])); + { + V T1n, T1q, T1j, T1k; + T1n = VADD(T1l, T1m); + T1q = VBYI(VSUB(T1o, T1p)); + ST(&(x[WS(rs, 14)]), VSUB(T1n, T1q), ms, &(x[0])); + ST(&(x[WS(rs, 1)]), VADD(T1n, T1q), ms, &(x[WS(rs, 1)])); + T1j = VADD(TZ, T16); + T1k = VBYI(VADD(T1a, T1h)); + ST(&(x[WS(rs, 13)]), VSUB(T1j, T1k), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 2)]), VADD(T1j, T1k), ms, &(x[0])); + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + VTW(0, 10), + VTW(0, 11), + VTW(0, 12), + VTW(0, 13), + VTW(0, 14), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 15, XSIMD_STRING("t1fv_15"), twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1fv_15) (planner *p) { + X(kdft_dit_register) (p, t1fv_15, &desc); +} +#endif /* HAVE_FMA */