Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/n1fv_14.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 14 -name n1fv_14 -include n1f.h */ | |
29 | |
30 /* | |
31 * This function contains 74 FP additions, 48 FP multiplications, | |
32 * (or, 32 additions, 6 multiplications, 42 fused multiply/add), | |
33 * 63 stack variables, 6 constants, and 28 memory accesses | |
34 */ | |
35 #include "n1f.h" | |
36 | |
37 static void n1fv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
40 DVK(KP801937735, +0.801937735804838252472204639014890102331838324); | |
41 DVK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
42 DVK(KP692021471, +0.692021471630095869627814897002069140197260599); | |
43 DVK(KP554958132, +0.554958132087371191422194871006410481067288862); | |
44 DVK(KP356895867, +0.356895867892209443894399510021300583399127187); | |
45 { | |
46 INT i; | |
47 const R *xi; | |
48 R *xo; | |
49 xi = ri; | |
50 xo = ro; | |
51 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { | |
52 V TH, T3, TP, Tn, Ta, Ts, TW, TK, TO, Tk, TM, Tg, TL, Td, T1; | |
53 V T2; | |
54 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
55 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
56 { | |
57 V Ti, TI, T6, TJ, T9, Tj, Te, Tf, Tb, Tc; | |
58 { | |
59 V T4, T5, T7, T8, Tl, Tm; | |
60 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
61 T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
62 T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
63 T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
64 Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
65 Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
66 Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
67 TH = VADD(T1, T2); | |
68 T3 = VSUB(T1, T2); | |
69 TI = VADD(T4, T5); | |
70 T6 = VSUB(T4, T5); | |
71 TJ = VADD(T7, T8); | |
72 T9 = VSUB(T7, T8); | |
73 TP = VADD(Tl, Tm); | |
74 Tn = VSUB(Tl, Tm); | |
75 Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
76 Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
77 Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
78 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
79 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
80 } | |
81 Ta = VADD(T6, T9); | |
82 Ts = VSUB(T9, T6); | |
83 TW = VSUB(TJ, TI); | |
84 TK = VADD(TI, TJ); | |
85 TO = VADD(Ti, Tj); | |
86 Tk = VSUB(Ti, Tj); | |
87 TM = VADD(Te, Tf); | |
88 Tg = VSUB(Te, Tf); | |
89 TL = VADD(Tb, Tc); | |
90 Td = VSUB(Tb, Tc); | |
91 } | |
92 { | |
93 V T18, TB, T13, TY, TG, Tw, T11, Tr, T16, TT, Tz, TE, TU, TQ; | |
94 TU = VSUB(TO, TP); | |
95 TQ = VADD(TO, TP); | |
96 { | |
97 V Tt, To, TV, TN; | |
98 Tt = VSUB(Tn, Tk); | |
99 To = VADD(Tk, Tn); | |
100 TV = VSUB(TL, TM); | |
101 TN = VADD(TL, TM); | |
102 { | |
103 V Tu, Th, TZ, T17; | |
104 Tu = VSUB(Tg, Td); | |
105 Th = VADD(Td, Tg); | |
106 TZ = VFNMS(LDK(KP356895867), TK, TQ); | |
107 T17 = VFNMS(LDK(KP554958132), TU, TW); | |
108 { | |
109 V Tp, TA, T14, TR; | |
110 Tp = VFNMS(LDK(KP356895867), Ta, To); | |
111 TA = VFMA(LDK(KP554958132), Tt, Ts); | |
112 ST(&(xo[0]), VADD(TH, VADD(TK, VADD(TN, TQ))), ovs, &(xo[0])); | |
113 T14 = VFNMS(LDK(KP356895867), TN, TK); | |
114 TR = VFNMS(LDK(KP356895867), TQ, TN); | |
115 { | |
116 V T12, TX, Tx, TC; | |
117 T12 = VFMA(LDK(KP554958132), TV, TU); | |
118 TX = VFMA(LDK(KP554958132), TW, TV); | |
119 ST(&(xo[WS(os, 7)]), VADD(T3, VADD(Ta, VADD(Th, To))), ovs, &(xo[WS(os, 1)])); | |
120 Tx = VFNMS(LDK(KP356895867), Th, Ta); | |
121 TC = VFNMS(LDK(KP356895867), To, Th); | |
122 { | |
123 V TF, Tv, T10, Tq; | |
124 TF = VFNMS(LDK(KP554958132), Ts, Tu); | |
125 Tv = VFMA(LDK(KP554958132), Tu, Tt); | |
126 T10 = VFNMS(LDK(KP692021471), TZ, TN); | |
127 T18 = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), T17, TV)); | |
128 Tq = VFNMS(LDK(KP692021471), Tp, Th); | |
129 TB = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), TA, Tu)); | |
130 { | |
131 V T15, TS, Ty, TD; | |
132 T15 = VFNMS(LDK(KP692021471), T14, TQ); | |
133 TS = VFNMS(LDK(KP692021471), TR, TK); | |
134 T13 = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), T12, TW)); | |
135 TY = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TX, TU)); | |
136 Ty = VFNMS(LDK(KP692021471), Tx, To); | |
137 TD = VFNMS(LDK(KP692021471), TC, Ta); | |
138 TG = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TF, Tt)); | |
139 Tw = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tv, Ts)); | |
140 T11 = VFNMS(LDK(KP900968867), T10, TH); | |
141 Tr = VFNMS(LDK(KP900968867), Tq, T3); | |
142 T16 = VFNMS(LDK(KP900968867), T15, TH); | |
143 TT = VFNMS(LDK(KP900968867), TS, TH); | |
144 Tz = VFNMS(LDK(KP900968867), Ty, T3); | |
145 TE = VFNMS(LDK(KP900968867), TD, T3); | |
146 } | |
147 } | |
148 } | |
149 } | |
150 } | |
151 } | |
152 ST(&(xo[WS(os, 12)]), VFNMSI(T13, T11), ovs, &(xo[0])); | |
153 ST(&(xo[WS(os, 2)]), VFMAI(T13, T11), ovs, &(xo[0])); | |
154 ST(&(xo[WS(os, 9)]), VFMAI(Tw, Tr), ovs, &(xo[WS(os, 1)])); | |
155 ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tr), ovs, &(xo[WS(os, 1)])); | |
156 ST(&(xo[WS(os, 8)]), VFNMSI(T18, T16), ovs, &(xo[0])); | |
157 ST(&(xo[WS(os, 6)]), VFMAI(T18, T16), ovs, &(xo[0])); | |
158 ST(&(xo[WS(os, 10)]), VFNMSI(TY, TT), ovs, &(xo[0])); | |
159 ST(&(xo[WS(os, 4)]), VFMAI(TY, TT), ovs, &(xo[0])); | |
160 ST(&(xo[WS(os, 1)]), VFMAI(TB, Tz), ovs, &(xo[WS(os, 1)])); | |
161 ST(&(xo[WS(os, 13)]), VFNMSI(TB, Tz), ovs, &(xo[WS(os, 1)])); | |
162 ST(&(xo[WS(os, 3)]), VFMAI(TG, TE), ovs, &(xo[WS(os, 1)])); | |
163 ST(&(xo[WS(os, 11)]), VFNMSI(TG, TE), ovs, &(xo[WS(os, 1)])); | |
164 } | |
165 } | |
166 } | |
167 VLEAVE(); | |
168 } | |
169 | |
170 static const kdft_desc desc = { 14, XSIMD_STRING("n1fv_14"), {32, 6, 42, 0}, &GENUS, 0, 0, 0, 0 }; | |
171 | |
172 void XSIMD(codelet_n1fv_14) (planner *p) { | |
173 X(kdft_register) (p, n1fv_14, &desc); | |
174 } | |
175 | |
176 #else /* HAVE_FMA */ | |
177 | |
178 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 14 -name n1fv_14 -include n1f.h */ | |
179 | |
180 /* | |
181 * This function contains 74 FP additions, 36 FP multiplications, | |
182 * (or, 50 additions, 12 multiplications, 24 fused multiply/add), | |
183 * 33 stack variables, 6 constants, and 28 memory accesses | |
184 */ | |
185 #include "n1f.h" | |
186 | |
187 static void n1fv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
188 { | |
189 DVK(KP222520933, +0.222520933956314404288902564496794759466355569); | |
190 DVK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
191 DVK(KP623489801, +0.623489801858733530525004884004239810632274731); | |
192 DVK(KP433883739, +0.433883739117558120475768332848358754609990728); | |
193 DVK(KP781831482, +0.781831482468029808708444526674057750232334519); | |
194 DVK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
195 { | |
196 INT i; | |
197 const R *xi; | |
198 R *xo; | |
199 xi = ri; | |
200 xo = ro; | |
201 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { | |
202 V T3, Ty, To, TK, Tr, TE, Ta, TJ, Tq, TB, Th, TL, Ts, TH, T1; | |
203 V T2; | |
204 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
205 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
206 T3 = VSUB(T1, T2); | |
207 Ty = VADD(T1, T2); | |
208 { | |
209 V Tk, TC, Tn, TD; | |
210 { | |
211 V Ti, Tj, Tl, Tm; | |
212 Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
213 Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
214 Tk = VSUB(Ti, Tj); | |
215 TC = VADD(Ti, Tj); | |
216 Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
217 Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
218 Tn = VSUB(Tl, Tm); | |
219 TD = VADD(Tl, Tm); | |
220 } | |
221 To = VADD(Tk, Tn); | |
222 TK = VSUB(TC, TD); | |
223 Tr = VSUB(Tn, Tk); | |
224 TE = VADD(TC, TD); | |
225 } | |
226 { | |
227 V T6, Tz, T9, TA; | |
228 { | |
229 V T4, T5, T7, T8; | |
230 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
231 T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
232 T6 = VSUB(T4, T5); | |
233 Tz = VADD(T4, T5); | |
234 T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
235 T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
236 T9 = VSUB(T7, T8); | |
237 TA = VADD(T7, T8); | |
238 } | |
239 Ta = VADD(T6, T9); | |
240 TJ = VSUB(TA, Tz); | |
241 Tq = VSUB(T9, T6); | |
242 TB = VADD(Tz, TA); | |
243 } | |
244 { | |
245 V Td, TF, Tg, TG; | |
246 { | |
247 V Tb, Tc, Te, Tf; | |
248 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
249 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
250 Td = VSUB(Tb, Tc); | |
251 TF = VADD(Tb, Tc); | |
252 Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
253 Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
254 Tg = VSUB(Te, Tf); | |
255 TG = VADD(Te, Tf); | |
256 } | |
257 Th = VADD(Td, Tg); | |
258 TL = VSUB(TF, TG); | |
259 Ts = VSUB(Tg, Td); | |
260 TH = VADD(TF, TG); | |
261 } | |
262 ST(&(xo[WS(os, 7)]), VADD(T3, VADD(Ta, VADD(Th, To))), ovs, &(xo[WS(os, 1)])); | |
263 ST(&(xo[0]), VADD(Ty, VADD(TB, VADD(TH, TE))), ovs, &(xo[0])); | |
264 { | |
265 V Tt, Tp, TP, TQ; | |
266 Tt = VBYI(VFNMS(LDK(KP781831482), Tr, VFNMS(LDK(KP433883739), Ts, VMUL(LDK(KP974927912), Tq)))); | |
267 Tp = VFMA(LDK(KP623489801), To, VFNMS(LDK(KP900968867), Th, VFNMS(LDK(KP222520933), Ta, T3))); | |
268 ST(&(xo[WS(os, 5)]), VSUB(Tp, Tt), ovs, &(xo[WS(os, 1)])); | |
269 ST(&(xo[WS(os, 9)]), VADD(Tp, Tt), ovs, &(xo[WS(os, 1)])); | |
270 TP = VBYI(VFMA(LDK(KP974927912), TJ, VFMA(LDK(KP433883739), TL, VMUL(LDK(KP781831482), TK)))); | |
271 TQ = VFMA(LDK(KP623489801), TE, VFNMS(LDK(KP900968867), TH, VFNMS(LDK(KP222520933), TB, Ty))); | |
272 ST(&(xo[WS(os, 2)]), VADD(TP, TQ), ovs, &(xo[0])); | |
273 ST(&(xo[WS(os, 12)]), VSUB(TQ, TP), ovs, &(xo[0])); | |
274 } | |
275 { | |
276 V Tv, Tu, TM, TI; | |
277 Tv = VBYI(VFMA(LDK(KP781831482), Tq, VFMA(LDK(KP974927912), Ts, VMUL(LDK(KP433883739), Tr)))); | |
278 Tu = VFMA(LDK(KP623489801), Ta, VFNMS(LDK(KP900968867), To, VFNMS(LDK(KP222520933), Th, T3))); | |
279 ST(&(xo[WS(os, 13)]), VSUB(Tu, Tv), ovs, &(xo[WS(os, 1)])); | |
280 ST(&(xo[WS(os, 1)]), VADD(Tu, Tv), ovs, &(xo[WS(os, 1)])); | |
281 TM = VBYI(VFNMS(LDK(KP433883739), TK, VFNMS(LDK(KP974927912), TL, VMUL(LDK(KP781831482), TJ)))); | |
282 TI = VFMA(LDK(KP623489801), TB, VFNMS(LDK(KP900968867), TE, VFNMS(LDK(KP222520933), TH, Ty))); | |
283 ST(&(xo[WS(os, 6)]), VSUB(TI, TM), ovs, &(xo[0])); | |
284 ST(&(xo[WS(os, 8)]), VADD(TM, TI), ovs, &(xo[0])); | |
285 } | |
286 { | |
287 V TO, TN, Tx, Tw; | |
288 TO = VBYI(VFMA(LDK(KP433883739), TJ, VFNMS(LDK(KP974927912), TK, VMUL(LDK(KP781831482), TL)))); | |
289 TN = VFMA(LDK(KP623489801), TH, VFNMS(LDK(KP222520933), TE, VFNMS(LDK(KP900968867), TB, Ty))); | |
290 ST(&(xo[WS(os, 4)]), VSUB(TN, TO), ovs, &(xo[0])); | |
291 ST(&(xo[WS(os, 10)]), VADD(TO, TN), ovs, &(xo[0])); | |
292 Tx = VBYI(VFMA(LDK(KP433883739), Tq, VFNMS(LDK(KP781831482), Ts, VMUL(LDK(KP974927912), Tr)))); | |
293 Tw = VFMA(LDK(KP623489801), Th, VFNMS(LDK(KP222520933), To, VFNMS(LDK(KP900968867), Ta, T3))); | |
294 ST(&(xo[WS(os, 11)]), VSUB(Tw, Tx), ovs, &(xo[WS(os, 1)])); | |
295 ST(&(xo[WS(os, 3)]), VADD(Tw, Tx), ovs, &(xo[WS(os, 1)])); | |
296 } | |
297 } | |
298 } | |
299 VLEAVE(); | |
300 } | |
301 | |
302 static const kdft_desc desc = { 14, XSIMD_STRING("n1fv_14"), {50, 12, 24, 0}, &GENUS, 0, 0, 0, 0 }; | |
303 | |
304 void XSIMD(codelet_n1fv_14) (planner *p) { | |
305 X(kdft_register) (p, n1fv_14, &desc); | |
306 } | |
307 | |
308 #endif /* HAVE_FMA */ |