Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/n1fv_14.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/n1fv_14.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,308 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:36:52 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 14 -name n1fv_14 -include n1f.h */ + +/* + * This function contains 74 FP additions, 48 FP multiplications, + * (or, 32 additions, 6 multiplications, 42 fused multiply/add), + * 63 stack variables, 6 constants, and 28 memory accesses + */ +#include "n1f.h" + +static void n1fv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP900968867, +0.900968867902419126236102319507445051165919162); + DVK(KP801937735, +0.801937735804838252472204639014890102331838324); + DVK(KP974927912, +0.974927912181823607018131682993931217232785801); + DVK(KP692021471, +0.692021471630095869627814897002069140197260599); + DVK(KP554958132, +0.554958132087371191422194871006410481067288862); + DVK(KP356895867, +0.356895867892209443894399510021300583399127187); + { + INT i; + const R *xi; + R *xo; + xi = ri; + xo = ro; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { + V TH, T3, TP, Tn, Ta, Ts, TW, TK, TO, Tk, TM, Tg, TL, Td, T1; + V T2; + T1 = LD(&(xi[0]), ivs, &(xi[0])); + T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); + { + V Ti, TI, T6, TJ, T9, Tj, Te, Tf, Tb, Tc; + { + V T4, T5, T7, T8, Tl, Tm; + T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); + T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); + T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); + Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + TH = VADD(T1, T2); + T3 = VSUB(T1, T2); + TI = VADD(T4, T5); + T6 = VSUB(T4, T5); + TJ = VADD(T7, T8); + T9 = VSUB(T7, T8); + TP = VADD(Tl, Tm); + Tn = VSUB(Tl, Tm); + Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); + Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); + Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); + } + Ta = VADD(T6, T9); + Ts = VSUB(T9, T6); + TW = VSUB(TJ, TI); + TK = VADD(TI, TJ); + TO = VADD(Ti, Tj); + Tk = VSUB(Ti, Tj); + TM = VADD(Te, Tf); + Tg = VSUB(Te, Tf); + TL = VADD(Tb, Tc); + Td = VSUB(Tb, Tc); + } + { + V T18, TB, T13, TY, TG, Tw, T11, Tr, T16, TT, Tz, TE, TU, TQ; + TU = VSUB(TO, TP); + TQ = VADD(TO, TP); + { + V Tt, To, TV, TN; + Tt = VSUB(Tn, Tk); + To = VADD(Tk, Tn); + TV = VSUB(TL, TM); + TN = VADD(TL, TM); + { + V Tu, Th, TZ, T17; + Tu = VSUB(Tg, Td); + Th = VADD(Td, Tg); + TZ = VFNMS(LDK(KP356895867), TK, TQ); + T17 = VFNMS(LDK(KP554958132), TU, TW); + { + V Tp, TA, T14, TR; + Tp = VFNMS(LDK(KP356895867), Ta, To); + TA = VFMA(LDK(KP554958132), Tt, Ts); + ST(&(xo[0]), VADD(TH, VADD(TK, VADD(TN, TQ))), ovs, &(xo[0])); + T14 = VFNMS(LDK(KP356895867), TN, TK); + TR = VFNMS(LDK(KP356895867), TQ, TN); + { + V T12, TX, Tx, TC; + T12 = VFMA(LDK(KP554958132), TV, TU); + TX = VFMA(LDK(KP554958132), TW, TV); + ST(&(xo[WS(os, 7)]), VADD(T3, VADD(Ta, VADD(Th, To))), ovs, &(xo[WS(os, 1)])); + Tx = VFNMS(LDK(KP356895867), Th, Ta); + TC = VFNMS(LDK(KP356895867), To, Th); + { + V TF, Tv, T10, Tq; + TF = VFNMS(LDK(KP554958132), Ts, Tu); + Tv = VFMA(LDK(KP554958132), Tu, Tt); + T10 = VFNMS(LDK(KP692021471), TZ, TN); + T18 = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), T17, TV)); + Tq = VFNMS(LDK(KP692021471), Tp, Th); + TB = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), TA, Tu)); + { + V T15, TS, Ty, TD; + T15 = VFNMS(LDK(KP692021471), T14, TQ); + TS = VFNMS(LDK(KP692021471), TR, TK); + T13 = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), T12, TW)); + TY = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TX, TU)); + Ty = VFNMS(LDK(KP692021471), Tx, To); + TD = VFNMS(LDK(KP692021471), TC, Ta); + TG = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TF, Tt)); + Tw = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tv, Ts)); + T11 = VFNMS(LDK(KP900968867), T10, TH); + Tr = VFNMS(LDK(KP900968867), Tq, T3); + T16 = VFNMS(LDK(KP900968867), T15, TH); + TT = VFNMS(LDK(KP900968867), TS, TH); + Tz = VFNMS(LDK(KP900968867), Ty, T3); + TE = VFNMS(LDK(KP900968867), TD, T3); + } + } + } + } + } + } + ST(&(xo[WS(os, 12)]), VFNMSI(T13, T11), ovs, &(xo[0])); + ST(&(xo[WS(os, 2)]), VFMAI(T13, T11), ovs, &(xo[0])); + ST(&(xo[WS(os, 9)]), VFMAI(Tw, Tr), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tr), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 8)]), VFNMSI(T18, T16), ovs, &(xo[0])); + ST(&(xo[WS(os, 6)]), VFMAI(T18, T16), ovs, &(xo[0])); + ST(&(xo[WS(os, 10)]), VFNMSI(TY, TT), ovs, &(xo[0])); + ST(&(xo[WS(os, 4)]), VFMAI(TY, TT), ovs, &(xo[0])); + ST(&(xo[WS(os, 1)]), VFMAI(TB, Tz), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 13)]), VFNMSI(TB, Tz), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 3)]), VFMAI(TG, TE), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 11)]), VFNMSI(TG, TE), ovs, &(xo[WS(os, 1)])); + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 14, XSIMD_STRING("n1fv_14"), {32, 6, 42, 0}, &GENUS, 0, 0, 0, 0 }; + +void XSIMD(codelet_n1fv_14) (planner *p) { + X(kdft_register) (p, n1fv_14, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 14 -name n1fv_14 -include n1f.h */ + +/* + * This function contains 74 FP additions, 36 FP multiplications, + * (or, 50 additions, 12 multiplications, 24 fused multiply/add), + * 33 stack variables, 6 constants, and 28 memory accesses + */ +#include "n1f.h" + +static void n1fv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP222520933, +0.222520933956314404288902564496794759466355569); + DVK(KP900968867, +0.900968867902419126236102319507445051165919162); + DVK(KP623489801, +0.623489801858733530525004884004239810632274731); + DVK(KP433883739, +0.433883739117558120475768332848358754609990728); + DVK(KP781831482, +0.781831482468029808708444526674057750232334519); + DVK(KP974927912, +0.974927912181823607018131682993931217232785801); + { + INT i; + const R *xi; + R *xo; + xi = ri; + xo = ro; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { + V T3, Ty, To, TK, Tr, TE, Ta, TJ, Tq, TB, Th, TL, Ts, TH, T1; + V T2; + T1 = LD(&(xi[0]), ivs, &(xi[0])); + T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); + T3 = VSUB(T1, T2); + Ty = VADD(T1, T2); + { + V Tk, TC, Tn, TD; + { + V Ti, Tj, Tl, Tm; + Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); + Tk = VSUB(Ti, Tj); + TC = VADD(Ti, Tj); + Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); + Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + Tn = VSUB(Tl, Tm); + TD = VADD(Tl, Tm); + } + To = VADD(Tk, Tn); + TK = VSUB(TC, TD); + Tr = VSUB(Tn, Tk); + TE = VADD(TC, TD); + } + { + V T6, Tz, T9, TA; + { + V T4, T5, T7, T8; + T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); + T6 = VSUB(T4, T5); + Tz = VADD(T4, T5); + T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); + T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + T9 = VSUB(T7, T8); + TA = VADD(T7, T8); + } + Ta = VADD(T6, T9); + TJ = VSUB(TA, Tz); + Tq = VSUB(T9, T6); + TB = VADD(Tz, TA); + } + { + V Td, TF, Tg, TG; + { + V Tb, Tc, Te, Tf; + Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); + Td = VSUB(Tb, Tc); + TF = VADD(Tb, Tc); + Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); + Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + Tg = VSUB(Te, Tf); + TG = VADD(Te, Tf); + } + Th = VADD(Td, Tg); + TL = VSUB(TF, TG); + Ts = VSUB(Tg, Td); + TH = VADD(TF, TG); + } + ST(&(xo[WS(os, 7)]), VADD(T3, VADD(Ta, VADD(Th, To))), ovs, &(xo[WS(os, 1)])); + ST(&(xo[0]), VADD(Ty, VADD(TB, VADD(TH, TE))), ovs, &(xo[0])); + { + V Tt, Tp, TP, TQ; + Tt = VBYI(VFNMS(LDK(KP781831482), Tr, VFNMS(LDK(KP433883739), Ts, VMUL(LDK(KP974927912), Tq)))); + Tp = VFMA(LDK(KP623489801), To, VFNMS(LDK(KP900968867), Th, VFNMS(LDK(KP222520933), Ta, T3))); + ST(&(xo[WS(os, 5)]), VSUB(Tp, Tt), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 9)]), VADD(Tp, Tt), ovs, &(xo[WS(os, 1)])); + TP = VBYI(VFMA(LDK(KP974927912), TJ, VFMA(LDK(KP433883739), TL, VMUL(LDK(KP781831482), TK)))); + TQ = VFMA(LDK(KP623489801), TE, VFNMS(LDK(KP900968867), TH, VFNMS(LDK(KP222520933), TB, Ty))); + ST(&(xo[WS(os, 2)]), VADD(TP, TQ), ovs, &(xo[0])); + ST(&(xo[WS(os, 12)]), VSUB(TQ, TP), ovs, &(xo[0])); + } + { + V Tv, Tu, TM, TI; + Tv = VBYI(VFMA(LDK(KP781831482), Tq, VFMA(LDK(KP974927912), Ts, VMUL(LDK(KP433883739), Tr)))); + Tu = VFMA(LDK(KP623489801), Ta, VFNMS(LDK(KP900968867), To, VFNMS(LDK(KP222520933), Th, T3))); + ST(&(xo[WS(os, 13)]), VSUB(Tu, Tv), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 1)]), VADD(Tu, Tv), ovs, &(xo[WS(os, 1)])); + TM = VBYI(VFNMS(LDK(KP433883739), TK, VFNMS(LDK(KP974927912), TL, VMUL(LDK(KP781831482), TJ)))); + TI = VFMA(LDK(KP623489801), TB, VFNMS(LDK(KP900968867), TE, VFNMS(LDK(KP222520933), TH, Ty))); + ST(&(xo[WS(os, 6)]), VSUB(TI, TM), ovs, &(xo[0])); + ST(&(xo[WS(os, 8)]), VADD(TM, TI), ovs, &(xo[0])); + } + { + V TO, TN, Tx, Tw; + TO = VBYI(VFMA(LDK(KP433883739), TJ, VFNMS(LDK(KP974927912), TK, VMUL(LDK(KP781831482), TL)))); + TN = VFMA(LDK(KP623489801), TH, VFNMS(LDK(KP222520933), TE, VFNMS(LDK(KP900968867), TB, Ty))); + ST(&(xo[WS(os, 4)]), VSUB(TN, TO), ovs, &(xo[0])); + ST(&(xo[WS(os, 10)]), VADD(TO, TN), ovs, &(xo[0])); + Tx = VBYI(VFMA(LDK(KP433883739), Tq, VFNMS(LDK(KP781831482), Ts, VMUL(LDK(KP974927912), Tr)))); + Tw = VFMA(LDK(KP623489801), Th, VFNMS(LDK(KP222520933), To, VFNMS(LDK(KP900968867), Ta, T3))); + ST(&(xo[WS(os, 11)]), VSUB(Tw, Tx), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 3)]), VADD(Tw, Tx), ovs, &(xo[WS(os, 1)])); + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 14, XSIMD_STRING("n1fv_14"), {50, 12, 24, 0}, &GENUS, 0, 0, 0, 0 }; + +void XSIMD(codelet_n1fv_14) (planner *p) { + X(kdft_register) (p, n1fv_14, &desc); +} + +#endif /* HAVE_FMA */