annotate src/zlib-1.2.8/adler32.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 5b4145a0d408
children
rev   line source
cannam@128 1 /* adler32.c -- compute the Adler-32 checksum of a data stream
cannam@128 2 * Copyright (C) 1995-2011 Mark Adler
cannam@128 3 * For conditions of distribution and use, see copyright notice in zlib.h
cannam@128 4 */
cannam@128 5
cannam@128 6 /* @(#) $Id$ */
cannam@128 7
cannam@128 8 #include "zutil.h"
cannam@128 9
cannam@128 10 #define local static
cannam@128 11
cannam@128 12 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
cannam@128 13
cannam@128 14 #define BASE 65521 /* largest prime smaller than 65536 */
cannam@128 15 #define NMAX 5552
cannam@128 16 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
cannam@128 17
cannam@128 18 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
cannam@128 19 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
cannam@128 20 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
cannam@128 21 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
cannam@128 22 #define DO16(buf) DO8(buf,0); DO8(buf,8);
cannam@128 23
cannam@128 24 /* use NO_DIVIDE if your processor does not do division in hardware --
cannam@128 25 try it both ways to see which is faster */
cannam@128 26 #ifdef NO_DIVIDE
cannam@128 27 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
cannam@128 28 (thank you to John Reiser for pointing this out) */
cannam@128 29 # define CHOP(a) \
cannam@128 30 do { \
cannam@128 31 unsigned long tmp = a >> 16; \
cannam@128 32 a &= 0xffffUL; \
cannam@128 33 a += (tmp << 4) - tmp; \
cannam@128 34 } while (0)
cannam@128 35 # define MOD28(a) \
cannam@128 36 do { \
cannam@128 37 CHOP(a); \
cannam@128 38 if (a >= BASE) a -= BASE; \
cannam@128 39 } while (0)
cannam@128 40 # define MOD(a) \
cannam@128 41 do { \
cannam@128 42 CHOP(a); \
cannam@128 43 MOD28(a); \
cannam@128 44 } while (0)
cannam@128 45 # define MOD63(a) \
cannam@128 46 do { /* this assumes a is not negative */ \
cannam@128 47 z_off64_t tmp = a >> 32; \
cannam@128 48 a &= 0xffffffffL; \
cannam@128 49 a += (tmp << 8) - (tmp << 5) + tmp; \
cannam@128 50 tmp = a >> 16; \
cannam@128 51 a &= 0xffffL; \
cannam@128 52 a += (tmp << 4) - tmp; \
cannam@128 53 tmp = a >> 16; \
cannam@128 54 a &= 0xffffL; \
cannam@128 55 a += (tmp << 4) - tmp; \
cannam@128 56 if (a >= BASE) a -= BASE; \
cannam@128 57 } while (0)
cannam@128 58 #else
cannam@128 59 # define MOD(a) a %= BASE
cannam@128 60 # define MOD28(a) a %= BASE
cannam@128 61 # define MOD63(a) a %= BASE
cannam@128 62 #endif
cannam@128 63
cannam@128 64 /* ========================================================================= */
cannam@128 65 uLong ZEXPORT adler32(adler, buf, len)
cannam@128 66 uLong adler;
cannam@128 67 const Bytef *buf;
cannam@128 68 uInt len;
cannam@128 69 {
cannam@128 70 unsigned long sum2;
cannam@128 71 unsigned n;
cannam@128 72
cannam@128 73 /* split Adler-32 into component sums */
cannam@128 74 sum2 = (adler >> 16) & 0xffff;
cannam@128 75 adler &= 0xffff;
cannam@128 76
cannam@128 77 /* in case user likes doing a byte at a time, keep it fast */
cannam@128 78 if (len == 1) {
cannam@128 79 adler += buf[0];
cannam@128 80 if (adler >= BASE)
cannam@128 81 adler -= BASE;
cannam@128 82 sum2 += adler;
cannam@128 83 if (sum2 >= BASE)
cannam@128 84 sum2 -= BASE;
cannam@128 85 return adler | (sum2 << 16);
cannam@128 86 }
cannam@128 87
cannam@128 88 /* initial Adler-32 value (deferred check for len == 1 speed) */
cannam@128 89 if (buf == Z_NULL)
cannam@128 90 return 1L;
cannam@128 91
cannam@128 92 /* in case short lengths are provided, keep it somewhat fast */
cannam@128 93 if (len < 16) {
cannam@128 94 while (len--) {
cannam@128 95 adler += *buf++;
cannam@128 96 sum2 += adler;
cannam@128 97 }
cannam@128 98 if (adler >= BASE)
cannam@128 99 adler -= BASE;
cannam@128 100 MOD28(sum2); /* only added so many BASE's */
cannam@128 101 return adler | (sum2 << 16);
cannam@128 102 }
cannam@128 103
cannam@128 104 /* do length NMAX blocks -- requires just one modulo operation */
cannam@128 105 while (len >= NMAX) {
cannam@128 106 len -= NMAX;
cannam@128 107 n = NMAX / 16; /* NMAX is divisible by 16 */
cannam@128 108 do {
cannam@128 109 DO16(buf); /* 16 sums unrolled */
cannam@128 110 buf += 16;
cannam@128 111 } while (--n);
cannam@128 112 MOD(adler);
cannam@128 113 MOD(sum2);
cannam@128 114 }
cannam@128 115
cannam@128 116 /* do remaining bytes (less than NMAX, still just one modulo) */
cannam@128 117 if (len) { /* avoid modulos if none remaining */
cannam@128 118 while (len >= 16) {
cannam@128 119 len -= 16;
cannam@128 120 DO16(buf);
cannam@128 121 buf += 16;
cannam@128 122 }
cannam@128 123 while (len--) {
cannam@128 124 adler += *buf++;
cannam@128 125 sum2 += adler;
cannam@128 126 }
cannam@128 127 MOD(adler);
cannam@128 128 MOD(sum2);
cannam@128 129 }
cannam@128 130
cannam@128 131 /* return recombined sums */
cannam@128 132 return adler | (sum2 << 16);
cannam@128 133 }
cannam@128 134
cannam@128 135 /* ========================================================================= */
cannam@128 136 local uLong adler32_combine_(adler1, adler2, len2)
cannam@128 137 uLong adler1;
cannam@128 138 uLong adler2;
cannam@128 139 z_off64_t len2;
cannam@128 140 {
cannam@128 141 unsigned long sum1;
cannam@128 142 unsigned long sum2;
cannam@128 143 unsigned rem;
cannam@128 144
cannam@128 145 /* for negative len, return invalid adler32 as a clue for debugging */
cannam@128 146 if (len2 < 0)
cannam@128 147 return 0xffffffffUL;
cannam@128 148
cannam@128 149 /* the derivation of this formula is left as an exercise for the reader */
cannam@128 150 MOD63(len2); /* assumes len2 >= 0 */
cannam@128 151 rem = (unsigned)len2;
cannam@128 152 sum1 = adler1 & 0xffff;
cannam@128 153 sum2 = rem * sum1;
cannam@128 154 MOD(sum2);
cannam@128 155 sum1 += (adler2 & 0xffff) + BASE - 1;
cannam@128 156 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
cannam@128 157 if (sum1 >= BASE) sum1 -= BASE;
cannam@128 158 if (sum1 >= BASE) sum1 -= BASE;
cannam@128 159 if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
cannam@128 160 if (sum2 >= BASE) sum2 -= BASE;
cannam@128 161 return sum1 | (sum2 << 16);
cannam@128 162 }
cannam@128 163
cannam@128 164 /* ========================================================================= */
cannam@128 165 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
cannam@128 166 uLong adler1;
cannam@128 167 uLong adler2;
cannam@128 168 z_off_t len2;
cannam@128 169 {
cannam@128 170 return adler32_combine_(adler1, adler2, len2);
cannam@128 171 }
cannam@128 172
cannam@128 173 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
cannam@128 174 uLong adler1;
cannam@128 175 uLong adler2;
cannam@128 176 z_off64_t len2;
cannam@128 177 {
cannam@128 178 return adler32_combine_(adler1, adler2, len2);
cannam@128 179 }