cannam@128: /* adler32.c -- compute the Adler-32 checksum of a data stream cannam@128: * Copyright (C) 1995-2011 Mark Adler cannam@128: * For conditions of distribution and use, see copyright notice in zlib.h cannam@128: */ cannam@128: cannam@128: /* @(#) $Id$ */ cannam@128: cannam@128: #include "zutil.h" cannam@128: cannam@128: #define local static cannam@128: cannam@128: local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); cannam@128: cannam@128: #define BASE 65521 /* largest prime smaller than 65536 */ cannam@128: #define NMAX 5552 cannam@128: /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ cannam@128: cannam@128: #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} cannam@128: #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); cannam@128: #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); cannam@128: #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); cannam@128: #define DO16(buf) DO8(buf,0); DO8(buf,8); cannam@128: cannam@128: /* use NO_DIVIDE if your processor does not do division in hardware -- cannam@128: try it both ways to see which is faster */ cannam@128: #ifdef NO_DIVIDE cannam@128: /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 cannam@128: (thank you to John Reiser for pointing this out) */ cannam@128: # define CHOP(a) \ cannam@128: do { \ cannam@128: unsigned long tmp = a >> 16; \ cannam@128: a &= 0xffffUL; \ cannam@128: a += (tmp << 4) - tmp; \ cannam@128: } while (0) cannam@128: # define MOD28(a) \ cannam@128: do { \ cannam@128: CHOP(a); \ cannam@128: if (a >= BASE) a -= BASE; \ cannam@128: } while (0) cannam@128: # define MOD(a) \ cannam@128: do { \ cannam@128: CHOP(a); \ cannam@128: MOD28(a); \ cannam@128: } while (0) cannam@128: # define MOD63(a) \ cannam@128: do { /* this assumes a is not negative */ \ cannam@128: z_off64_t tmp = a >> 32; \ cannam@128: a &= 0xffffffffL; \ cannam@128: a += (tmp << 8) - (tmp << 5) + tmp; \ cannam@128: tmp = a >> 16; \ cannam@128: a &= 0xffffL; \ cannam@128: a += (tmp << 4) - tmp; \ cannam@128: tmp = a >> 16; \ cannam@128: a &= 0xffffL; \ cannam@128: a += (tmp << 4) - tmp; \ cannam@128: if (a >= BASE) a -= BASE; \ cannam@128: } while (0) cannam@128: #else cannam@128: # define MOD(a) a %= BASE cannam@128: # define MOD28(a) a %= BASE cannam@128: # define MOD63(a) a %= BASE cannam@128: #endif cannam@128: cannam@128: /* ========================================================================= */ cannam@128: uLong ZEXPORT adler32(adler, buf, len) cannam@128: uLong adler; cannam@128: const Bytef *buf; cannam@128: uInt len; cannam@128: { cannam@128: unsigned long sum2; cannam@128: unsigned n; cannam@128: cannam@128: /* split Adler-32 into component sums */ cannam@128: sum2 = (adler >> 16) & 0xffff; cannam@128: adler &= 0xffff; cannam@128: cannam@128: /* in case user likes doing a byte at a time, keep it fast */ cannam@128: if (len == 1) { cannam@128: adler += buf[0]; cannam@128: if (adler >= BASE) cannam@128: adler -= BASE; cannam@128: sum2 += adler; cannam@128: if (sum2 >= BASE) cannam@128: sum2 -= BASE; cannam@128: return adler | (sum2 << 16); cannam@128: } cannam@128: cannam@128: /* initial Adler-32 value (deferred check for len == 1 speed) */ cannam@128: if (buf == Z_NULL) cannam@128: return 1L; cannam@128: cannam@128: /* in case short lengths are provided, keep it somewhat fast */ cannam@128: if (len < 16) { cannam@128: while (len--) { cannam@128: adler += *buf++; cannam@128: sum2 += adler; cannam@128: } cannam@128: if (adler >= BASE) cannam@128: adler -= BASE; cannam@128: MOD28(sum2); /* only added so many BASE's */ cannam@128: return adler | (sum2 << 16); cannam@128: } cannam@128: cannam@128: /* do length NMAX blocks -- requires just one modulo operation */ cannam@128: while (len >= NMAX) { cannam@128: len -= NMAX; cannam@128: n = NMAX / 16; /* NMAX is divisible by 16 */ cannam@128: do { cannam@128: DO16(buf); /* 16 sums unrolled */ cannam@128: buf += 16; cannam@128: } while (--n); cannam@128: MOD(adler); cannam@128: MOD(sum2); cannam@128: } cannam@128: cannam@128: /* do remaining bytes (less than NMAX, still just one modulo) */ cannam@128: if (len) { /* avoid modulos if none remaining */ cannam@128: while (len >= 16) { cannam@128: len -= 16; cannam@128: DO16(buf); cannam@128: buf += 16; cannam@128: } cannam@128: while (len--) { cannam@128: adler += *buf++; cannam@128: sum2 += adler; cannam@128: } cannam@128: MOD(adler); cannam@128: MOD(sum2); cannam@128: } cannam@128: cannam@128: /* return recombined sums */ cannam@128: return adler | (sum2 << 16); cannam@128: } cannam@128: cannam@128: /* ========================================================================= */ cannam@128: local uLong adler32_combine_(adler1, adler2, len2) cannam@128: uLong adler1; cannam@128: uLong adler2; cannam@128: z_off64_t len2; cannam@128: { cannam@128: unsigned long sum1; cannam@128: unsigned long sum2; cannam@128: unsigned rem; cannam@128: cannam@128: /* for negative len, return invalid adler32 as a clue for debugging */ cannam@128: if (len2 < 0) cannam@128: return 0xffffffffUL; cannam@128: cannam@128: /* the derivation of this formula is left as an exercise for the reader */ cannam@128: MOD63(len2); /* assumes len2 >= 0 */ cannam@128: rem = (unsigned)len2; cannam@128: sum1 = adler1 & 0xffff; cannam@128: sum2 = rem * sum1; cannam@128: MOD(sum2); cannam@128: sum1 += (adler2 & 0xffff) + BASE - 1; cannam@128: sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; cannam@128: if (sum1 >= BASE) sum1 -= BASE; cannam@128: if (sum1 >= BASE) sum1 -= BASE; cannam@128: if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); cannam@128: if (sum2 >= BASE) sum2 -= BASE; cannam@128: return sum1 | (sum2 << 16); cannam@128: } cannam@128: cannam@128: /* ========================================================================= */ cannam@128: uLong ZEXPORT adler32_combine(adler1, adler2, len2) cannam@128: uLong adler1; cannam@128: uLong adler2; cannam@128: z_off_t len2; cannam@128: { cannam@128: return adler32_combine_(adler1, adler2, len2); cannam@128: } cannam@128: cannam@128: uLong ZEXPORT adler32_combine64(adler1, adler2, len2) cannam@128: uLong adler1; cannam@128: uLong adler2; cannam@128: z_off64_t len2; cannam@128: { cannam@128: return adler32_combine_(adler1, adler2, len2); cannam@128: }