cannam@154
|
1 /***********************************************************************
|
cannam@154
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
cannam@154
|
3 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
4 modification, are permitted provided that the following conditions
|
cannam@154
|
5 are met:
|
cannam@154
|
6 - Redistributions of source code must retain the above copyright notice,
|
cannam@154
|
7 this list of conditions and the following disclaimer.
|
cannam@154
|
8 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
10 documentation and/or other materials provided with the distribution.
|
cannam@154
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
|
cannam@154
|
12 names of specific contributors, may be used to endorse or promote
|
cannam@154
|
13 products derived from this software without specific prior written
|
cannam@154
|
14 permission.
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
cannam@154
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
cannam@154
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
cannam@154
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
cannam@154
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
cannam@154
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
cannam@154
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
cannam@154
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
cannam@154
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
cannam@154
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
cannam@154
|
25 POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 ***********************************************************************/
|
cannam@154
|
27
|
cannam@154
|
28 #ifdef HAVE_CONFIG_H
|
cannam@154
|
29 #include "config.h"
|
cannam@154
|
30 #endif
|
cannam@154
|
31
|
cannam@154
|
32 #include "main.h"
|
cannam@154
|
33
|
cannam@154
|
34 /* Delayed-decision quantizer for NLSF residuals */
|
cannam@154
|
35 opus_int32 silk_NLSF_del_dec_quant( /* O Returns RD value in Q25 */
|
cannam@154
|
36 opus_int8 indices[], /* O Quantization indices [ order ] */
|
cannam@154
|
37 const opus_int16 x_Q10[], /* I Input [ order ] */
|
cannam@154
|
38 const opus_int16 w_Q5[], /* I Weights [ order ] */
|
cannam@154
|
39 const opus_uint8 pred_coef_Q8[], /* I Backward predictor coefs [ order ] */
|
cannam@154
|
40 const opus_int16 ec_ix[], /* I Indices to entropy coding tables [ order ] */
|
cannam@154
|
41 const opus_uint8 ec_rates_Q5[], /* I Rates [] */
|
cannam@154
|
42 const opus_int quant_step_size_Q16, /* I Quantization step size */
|
cannam@154
|
43 const opus_int16 inv_quant_step_size_Q6, /* I Inverse quantization step size */
|
cannam@154
|
44 const opus_int32 mu_Q20, /* I R/D tradeoff */
|
cannam@154
|
45 const opus_int16 order /* I Number of input values */
|
cannam@154
|
46 )
|
cannam@154
|
47 {
|
cannam@154
|
48 opus_int i, j, nStates, ind_tmp, ind_min_max, ind_max_min, in_Q10, res_Q10;
|
cannam@154
|
49 opus_int pred_Q10, diff_Q10, rate0_Q5, rate1_Q5;
|
cannam@154
|
50 opus_int16 out0_Q10, out1_Q10;
|
cannam@154
|
51 opus_int32 RD_tmp_Q25, min_Q25, min_max_Q25, max_min_Q25;
|
cannam@154
|
52 opus_int ind_sort[ NLSF_QUANT_DEL_DEC_STATES ];
|
cannam@154
|
53 opus_int8 ind[ NLSF_QUANT_DEL_DEC_STATES ][ MAX_LPC_ORDER ];
|
cannam@154
|
54 opus_int16 prev_out_Q10[ 2 * NLSF_QUANT_DEL_DEC_STATES ];
|
cannam@154
|
55 opus_int32 RD_Q25[ 2 * NLSF_QUANT_DEL_DEC_STATES ];
|
cannam@154
|
56 opus_int32 RD_min_Q25[ NLSF_QUANT_DEL_DEC_STATES ];
|
cannam@154
|
57 opus_int32 RD_max_Q25[ NLSF_QUANT_DEL_DEC_STATES ];
|
cannam@154
|
58 const opus_uint8 *rates_Q5;
|
cannam@154
|
59
|
cannam@154
|
60 opus_int out0_Q10_table[2 * NLSF_QUANT_MAX_AMPLITUDE_EXT];
|
cannam@154
|
61 opus_int out1_Q10_table[2 * NLSF_QUANT_MAX_AMPLITUDE_EXT];
|
cannam@154
|
62
|
cannam@154
|
63 for (i = -NLSF_QUANT_MAX_AMPLITUDE_EXT; i <= NLSF_QUANT_MAX_AMPLITUDE_EXT-1; i++)
|
cannam@154
|
64 {
|
cannam@154
|
65 out0_Q10 = silk_LSHIFT( i, 10 );
|
cannam@154
|
66 out1_Q10 = silk_ADD16( out0_Q10, 1024 );
|
cannam@154
|
67 if( i > 0 ) {
|
cannam@154
|
68 out0_Q10 = silk_SUB16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
cannam@154
|
69 out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
cannam@154
|
70 } else if( i == 0 ) {
|
cannam@154
|
71 out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
cannam@154
|
72 } else if( i == -1 ) {
|
cannam@154
|
73 out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
cannam@154
|
74 } else {
|
cannam@154
|
75 out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
cannam@154
|
76 out1_Q10 = silk_ADD16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
cannam@154
|
77 }
|
cannam@154
|
78 out0_Q10_table[ i + NLSF_QUANT_MAX_AMPLITUDE_EXT ] = silk_RSHIFT( silk_SMULBB( out0_Q10, quant_step_size_Q16 ), 16 );
|
cannam@154
|
79 out1_Q10_table[ i + NLSF_QUANT_MAX_AMPLITUDE_EXT ] = silk_RSHIFT( silk_SMULBB( out1_Q10, quant_step_size_Q16 ), 16 );
|
cannam@154
|
80 }
|
cannam@154
|
81
|
cannam@154
|
82 silk_assert( (NLSF_QUANT_DEL_DEC_STATES & (NLSF_QUANT_DEL_DEC_STATES-1)) == 0 ); /* must be power of two */
|
cannam@154
|
83
|
cannam@154
|
84 nStates = 1;
|
cannam@154
|
85 RD_Q25[ 0 ] = 0;
|
cannam@154
|
86 prev_out_Q10[ 0 ] = 0;
|
cannam@154
|
87 for( i = order - 1; i >= 0; i-- ) {
|
cannam@154
|
88 rates_Q5 = &ec_rates_Q5[ ec_ix[ i ] ];
|
cannam@154
|
89 in_Q10 = x_Q10[ i ];
|
cannam@154
|
90 for( j = 0; j < nStates; j++ ) {
|
cannam@154
|
91 pred_Q10 = silk_RSHIFT( silk_SMULBB( (opus_int16)pred_coef_Q8[ i ], prev_out_Q10[ j ] ), 8 );
|
cannam@154
|
92 res_Q10 = silk_SUB16( in_Q10, pred_Q10 );
|
cannam@154
|
93 ind_tmp = silk_RSHIFT( silk_SMULBB( inv_quant_step_size_Q6, res_Q10 ), 16 );
|
cannam@154
|
94 ind_tmp = silk_LIMIT( ind_tmp, -NLSF_QUANT_MAX_AMPLITUDE_EXT, NLSF_QUANT_MAX_AMPLITUDE_EXT-1 );
|
cannam@154
|
95 ind[ j ][ i ] = (opus_int8)ind_tmp;
|
cannam@154
|
96
|
cannam@154
|
97 /* compute outputs for ind_tmp and ind_tmp + 1 */
|
cannam@154
|
98 out0_Q10 = out0_Q10_table[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE_EXT ];
|
cannam@154
|
99 out1_Q10 = out1_Q10_table[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE_EXT ];
|
cannam@154
|
100
|
cannam@154
|
101 out0_Q10 = silk_ADD16( out0_Q10, pred_Q10 );
|
cannam@154
|
102 out1_Q10 = silk_ADD16( out1_Q10, pred_Q10 );
|
cannam@154
|
103 prev_out_Q10[ j ] = out0_Q10;
|
cannam@154
|
104 prev_out_Q10[ j + nStates ] = out1_Q10;
|
cannam@154
|
105
|
cannam@154
|
106 /* compute RD for ind_tmp and ind_tmp + 1 */
|
cannam@154
|
107 if( ind_tmp + 1 >= NLSF_QUANT_MAX_AMPLITUDE ) {
|
cannam@154
|
108 if( ind_tmp + 1 == NLSF_QUANT_MAX_AMPLITUDE ) {
|
cannam@154
|
109 rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ];
|
cannam@154
|
110 rate1_Q5 = 280;
|
cannam@154
|
111 } else {
|
cannam@154
|
112 rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, 43, ind_tmp );
|
cannam@154
|
113 rate1_Q5 = silk_ADD16( rate0_Q5, 43 );
|
cannam@154
|
114 }
|
cannam@154
|
115 } else if( ind_tmp <= -NLSF_QUANT_MAX_AMPLITUDE ) {
|
cannam@154
|
116 if( ind_tmp == -NLSF_QUANT_MAX_AMPLITUDE ) {
|
cannam@154
|
117 rate0_Q5 = 280;
|
cannam@154
|
118 rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ];
|
cannam@154
|
119 } else {
|
cannam@154
|
120 rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, -43, ind_tmp );
|
cannam@154
|
121 rate1_Q5 = silk_SUB16( rate0_Q5, 43 );
|
cannam@154
|
122 }
|
cannam@154
|
123 } else {
|
cannam@154
|
124 rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ];
|
cannam@154
|
125 rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ];
|
cannam@154
|
126 }
|
cannam@154
|
127 RD_tmp_Q25 = RD_Q25[ j ];
|
cannam@154
|
128 diff_Q10 = silk_SUB16( in_Q10, out0_Q10 );
|
cannam@154
|
129 RD_Q25[ j ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate0_Q5 );
|
cannam@154
|
130 diff_Q10 = silk_SUB16( in_Q10, out1_Q10 );
|
cannam@154
|
131 RD_Q25[ j + nStates ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate1_Q5 );
|
cannam@154
|
132 }
|
cannam@154
|
133
|
cannam@154
|
134 if( nStates <= NLSF_QUANT_DEL_DEC_STATES/2 ) {
|
cannam@154
|
135 /* double number of states and copy */
|
cannam@154
|
136 for( j = 0; j < nStates; j++ ) {
|
cannam@154
|
137 ind[ j + nStates ][ i ] = ind[ j ][ i ] + 1;
|
cannam@154
|
138 }
|
cannam@154
|
139 nStates = silk_LSHIFT( nStates, 1 );
|
cannam@154
|
140 for( j = nStates; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
|
cannam@154
|
141 ind[ j ][ i ] = ind[ j - nStates ][ i ];
|
cannam@154
|
142 }
|
cannam@154
|
143 } else {
|
cannam@154
|
144 /* sort lower and upper half of RD_Q25, pairwise */
|
cannam@154
|
145 for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
|
cannam@154
|
146 if( RD_Q25[ j ] > RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] ) {
|
cannam@154
|
147 RD_max_Q25[ j ] = RD_Q25[ j ];
|
cannam@154
|
148 RD_min_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ];
|
cannam@154
|
149 RD_Q25[ j ] = RD_min_Q25[ j ];
|
cannam@154
|
150 RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] = RD_max_Q25[ j ];
|
cannam@154
|
151 /* swap prev_out values */
|
cannam@154
|
152 out0_Q10 = prev_out_Q10[ j ];
|
cannam@154
|
153 prev_out_Q10[ j ] = prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ];
|
cannam@154
|
154 prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ] = out0_Q10;
|
cannam@154
|
155 ind_sort[ j ] = j + NLSF_QUANT_DEL_DEC_STATES;
|
cannam@154
|
156 } else {
|
cannam@154
|
157 RD_min_Q25[ j ] = RD_Q25[ j ];
|
cannam@154
|
158 RD_max_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ];
|
cannam@154
|
159 ind_sort[ j ] = j;
|
cannam@154
|
160 }
|
cannam@154
|
161 }
|
cannam@154
|
162 /* compare the highest RD values of the winning half with the lowest one in the losing half, and copy if necessary */
|
cannam@154
|
163 /* afterwards ind_sort[] will contain the indices of the NLSF_QUANT_DEL_DEC_STATES winning RD values */
|
cannam@154
|
164 while( 1 ) {
|
cannam@154
|
165 min_max_Q25 = silk_int32_MAX;
|
cannam@154
|
166 max_min_Q25 = 0;
|
cannam@154
|
167 ind_min_max = 0;
|
cannam@154
|
168 ind_max_min = 0;
|
cannam@154
|
169 for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
|
cannam@154
|
170 if( min_max_Q25 > RD_max_Q25[ j ] ) {
|
cannam@154
|
171 min_max_Q25 = RD_max_Q25[ j ];
|
cannam@154
|
172 ind_min_max = j;
|
cannam@154
|
173 }
|
cannam@154
|
174 if( max_min_Q25 < RD_min_Q25[ j ] ) {
|
cannam@154
|
175 max_min_Q25 = RD_min_Q25[ j ];
|
cannam@154
|
176 ind_max_min = j;
|
cannam@154
|
177 }
|
cannam@154
|
178 }
|
cannam@154
|
179 if( min_max_Q25 >= max_min_Q25 ) {
|
cannam@154
|
180 break;
|
cannam@154
|
181 }
|
cannam@154
|
182 /* copy ind_min_max to ind_max_min */
|
cannam@154
|
183 ind_sort[ ind_max_min ] = ind_sort[ ind_min_max ] ^ NLSF_QUANT_DEL_DEC_STATES;
|
cannam@154
|
184 RD_Q25[ ind_max_min ] = RD_Q25[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ];
|
cannam@154
|
185 prev_out_Q10[ ind_max_min ] = prev_out_Q10[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ];
|
cannam@154
|
186 RD_min_Q25[ ind_max_min ] = 0;
|
cannam@154
|
187 RD_max_Q25[ ind_min_max ] = silk_int32_MAX;
|
cannam@154
|
188 silk_memcpy( ind[ ind_max_min ], ind[ ind_min_max ], MAX_LPC_ORDER * sizeof( opus_int8 ) );
|
cannam@154
|
189 }
|
cannam@154
|
190 /* increment index if it comes from the upper half */
|
cannam@154
|
191 for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
|
cannam@154
|
192 ind[ j ][ i ] += silk_RSHIFT( ind_sort[ j ], NLSF_QUANT_DEL_DEC_STATES_LOG2 );
|
cannam@154
|
193 }
|
cannam@154
|
194 }
|
cannam@154
|
195 }
|
cannam@154
|
196
|
cannam@154
|
197 /* last sample: find winner, copy indices and return RD value */
|
cannam@154
|
198 ind_tmp = 0;
|
cannam@154
|
199 min_Q25 = silk_int32_MAX;
|
cannam@154
|
200 for( j = 0; j < 2 * NLSF_QUANT_DEL_DEC_STATES; j++ ) {
|
cannam@154
|
201 if( min_Q25 > RD_Q25[ j ] ) {
|
cannam@154
|
202 min_Q25 = RD_Q25[ j ];
|
cannam@154
|
203 ind_tmp = j;
|
cannam@154
|
204 }
|
cannam@154
|
205 }
|
cannam@154
|
206 for( j = 0; j < order; j++ ) {
|
cannam@154
|
207 indices[ j ] = ind[ ind_tmp & ( NLSF_QUANT_DEL_DEC_STATES - 1 ) ][ j ];
|
cannam@154
|
208 silk_assert( indices[ j ] >= -NLSF_QUANT_MAX_AMPLITUDE_EXT );
|
cannam@154
|
209 silk_assert( indices[ j ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT );
|
cannam@154
|
210 }
|
cannam@154
|
211 indices[ 0 ] += silk_RSHIFT( ind_tmp, NLSF_QUANT_DEL_DEC_STATES_LOG2 );
|
cannam@154
|
212 silk_assert( indices[ 0 ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT );
|
cannam@154
|
213 silk_assert( min_Q25 >= 0 );
|
cannam@154
|
214 return min_Q25;
|
cannam@154
|
215 }
|