cannam@154: /*********************************************************************** cannam@154: Copyright (c) 2006-2011, Skype Limited. All rights reserved. cannam@154: Redistribution and use in source and binary forms, with or without cannam@154: modification, are permitted provided that the following conditions cannam@154: are met: cannam@154: - Redistributions of source code must retain the above copyright notice, cannam@154: this list of conditions and the following disclaimer. cannam@154: - Redistributions in binary form must reproduce the above copyright cannam@154: notice, this list of conditions and the following disclaimer in the cannam@154: documentation and/or other materials provided with the distribution. cannam@154: - Neither the name of Internet Society, IETF or IETF Trust, nor the cannam@154: names of specific contributors, may be used to endorse or promote cannam@154: products derived from this software without specific prior written cannam@154: permission. cannam@154: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" cannam@154: AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE cannam@154: IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE cannam@154: ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE cannam@154: LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR cannam@154: CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF cannam@154: SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS cannam@154: INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN cannam@154: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) cannam@154: ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE cannam@154: POSSIBILITY OF SUCH DAMAGE. cannam@154: ***********************************************************************/ cannam@154: cannam@154: #ifdef HAVE_CONFIG_H cannam@154: #include "config.h" cannam@154: #endif cannam@154: cannam@154: #include "main.h" cannam@154: cannam@154: /* Delayed-decision quantizer for NLSF residuals */ cannam@154: opus_int32 silk_NLSF_del_dec_quant( /* O Returns RD value in Q25 */ cannam@154: opus_int8 indices[], /* O Quantization indices [ order ] */ cannam@154: const opus_int16 x_Q10[], /* I Input [ order ] */ cannam@154: const opus_int16 w_Q5[], /* I Weights [ order ] */ cannam@154: const opus_uint8 pred_coef_Q8[], /* I Backward predictor coefs [ order ] */ cannam@154: const opus_int16 ec_ix[], /* I Indices to entropy coding tables [ order ] */ cannam@154: const opus_uint8 ec_rates_Q5[], /* I Rates [] */ cannam@154: const opus_int quant_step_size_Q16, /* I Quantization step size */ cannam@154: const opus_int16 inv_quant_step_size_Q6, /* I Inverse quantization step size */ cannam@154: const opus_int32 mu_Q20, /* I R/D tradeoff */ cannam@154: const opus_int16 order /* I Number of input values */ cannam@154: ) cannam@154: { cannam@154: opus_int i, j, nStates, ind_tmp, ind_min_max, ind_max_min, in_Q10, res_Q10; cannam@154: opus_int pred_Q10, diff_Q10, rate0_Q5, rate1_Q5; cannam@154: opus_int16 out0_Q10, out1_Q10; cannam@154: opus_int32 RD_tmp_Q25, min_Q25, min_max_Q25, max_min_Q25; cannam@154: opus_int ind_sort[ NLSF_QUANT_DEL_DEC_STATES ]; cannam@154: opus_int8 ind[ NLSF_QUANT_DEL_DEC_STATES ][ MAX_LPC_ORDER ]; cannam@154: opus_int16 prev_out_Q10[ 2 * NLSF_QUANT_DEL_DEC_STATES ]; cannam@154: opus_int32 RD_Q25[ 2 * NLSF_QUANT_DEL_DEC_STATES ]; cannam@154: opus_int32 RD_min_Q25[ NLSF_QUANT_DEL_DEC_STATES ]; cannam@154: opus_int32 RD_max_Q25[ NLSF_QUANT_DEL_DEC_STATES ]; cannam@154: const opus_uint8 *rates_Q5; cannam@154: cannam@154: opus_int out0_Q10_table[2 * NLSF_QUANT_MAX_AMPLITUDE_EXT]; cannam@154: opus_int out1_Q10_table[2 * NLSF_QUANT_MAX_AMPLITUDE_EXT]; cannam@154: cannam@154: for (i = -NLSF_QUANT_MAX_AMPLITUDE_EXT; i <= NLSF_QUANT_MAX_AMPLITUDE_EXT-1; i++) cannam@154: { cannam@154: out0_Q10 = silk_LSHIFT( i, 10 ); cannam@154: out1_Q10 = silk_ADD16( out0_Q10, 1024 ); cannam@154: if( i > 0 ) { cannam@154: out0_Q10 = silk_SUB16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); cannam@154: out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); cannam@154: } else if( i == 0 ) { cannam@154: out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); cannam@154: } else if( i == -1 ) { cannam@154: out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); cannam@154: } else { cannam@154: out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); cannam@154: out1_Q10 = silk_ADD16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); cannam@154: } cannam@154: out0_Q10_table[ i + NLSF_QUANT_MAX_AMPLITUDE_EXT ] = silk_RSHIFT( silk_SMULBB( out0_Q10, quant_step_size_Q16 ), 16 ); cannam@154: out1_Q10_table[ i + NLSF_QUANT_MAX_AMPLITUDE_EXT ] = silk_RSHIFT( silk_SMULBB( out1_Q10, quant_step_size_Q16 ), 16 ); cannam@154: } cannam@154: cannam@154: silk_assert( (NLSF_QUANT_DEL_DEC_STATES & (NLSF_QUANT_DEL_DEC_STATES-1)) == 0 ); /* must be power of two */ cannam@154: cannam@154: nStates = 1; cannam@154: RD_Q25[ 0 ] = 0; cannam@154: prev_out_Q10[ 0 ] = 0; cannam@154: for( i = order - 1; i >= 0; i-- ) { cannam@154: rates_Q5 = &ec_rates_Q5[ ec_ix[ i ] ]; cannam@154: in_Q10 = x_Q10[ i ]; cannam@154: for( j = 0; j < nStates; j++ ) { cannam@154: pred_Q10 = silk_RSHIFT( silk_SMULBB( (opus_int16)pred_coef_Q8[ i ], prev_out_Q10[ j ] ), 8 ); cannam@154: res_Q10 = silk_SUB16( in_Q10, pred_Q10 ); cannam@154: ind_tmp = silk_RSHIFT( silk_SMULBB( inv_quant_step_size_Q6, res_Q10 ), 16 ); cannam@154: ind_tmp = silk_LIMIT( ind_tmp, -NLSF_QUANT_MAX_AMPLITUDE_EXT, NLSF_QUANT_MAX_AMPLITUDE_EXT-1 ); cannam@154: ind[ j ][ i ] = (opus_int8)ind_tmp; cannam@154: cannam@154: /* compute outputs for ind_tmp and ind_tmp + 1 */ cannam@154: out0_Q10 = out0_Q10_table[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE_EXT ]; cannam@154: out1_Q10 = out1_Q10_table[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE_EXT ]; cannam@154: cannam@154: out0_Q10 = silk_ADD16( out0_Q10, pred_Q10 ); cannam@154: out1_Q10 = silk_ADD16( out1_Q10, pred_Q10 ); cannam@154: prev_out_Q10[ j ] = out0_Q10; cannam@154: prev_out_Q10[ j + nStates ] = out1_Q10; cannam@154: cannam@154: /* compute RD for ind_tmp and ind_tmp + 1 */ cannam@154: if( ind_tmp + 1 >= NLSF_QUANT_MAX_AMPLITUDE ) { cannam@154: if( ind_tmp + 1 == NLSF_QUANT_MAX_AMPLITUDE ) { cannam@154: rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ]; cannam@154: rate1_Q5 = 280; cannam@154: } else { cannam@154: rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, 43, ind_tmp ); cannam@154: rate1_Q5 = silk_ADD16( rate0_Q5, 43 ); cannam@154: } cannam@154: } else if( ind_tmp <= -NLSF_QUANT_MAX_AMPLITUDE ) { cannam@154: if( ind_tmp == -NLSF_QUANT_MAX_AMPLITUDE ) { cannam@154: rate0_Q5 = 280; cannam@154: rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ]; cannam@154: } else { cannam@154: rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, -43, ind_tmp ); cannam@154: rate1_Q5 = silk_SUB16( rate0_Q5, 43 ); cannam@154: } cannam@154: } else { cannam@154: rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ]; cannam@154: rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ]; cannam@154: } cannam@154: RD_tmp_Q25 = RD_Q25[ j ]; cannam@154: diff_Q10 = silk_SUB16( in_Q10, out0_Q10 ); cannam@154: RD_Q25[ j ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate0_Q5 ); cannam@154: diff_Q10 = silk_SUB16( in_Q10, out1_Q10 ); cannam@154: RD_Q25[ j + nStates ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate1_Q5 ); cannam@154: } cannam@154: cannam@154: if( nStates <= NLSF_QUANT_DEL_DEC_STATES/2 ) { cannam@154: /* double number of states and copy */ cannam@154: for( j = 0; j < nStates; j++ ) { cannam@154: ind[ j + nStates ][ i ] = ind[ j ][ i ] + 1; cannam@154: } cannam@154: nStates = silk_LSHIFT( nStates, 1 ); cannam@154: for( j = nStates; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { cannam@154: ind[ j ][ i ] = ind[ j - nStates ][ i ]; cannam@154: } cannam@154: } else { cannam@154: /* sort lower and upper half of RD_Q25, pairwise */ cannam@154: for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { cannam@154: if( RD_Q25[ j ] > RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] ) { cannam@154: RD_max_Q25[ j ] = RD_Q25[ j ]; cannam@154: RD_min_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ]; cannam@154: RD_Q25[ j ] = RD_min_Q25[ j ]; cannam@154: RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] = RD_max_Q25[ j ]; cannam@154: /* swap prev_out values */ cannam@154: out0_Q10 = prev_out_Q10[ j ]; cannam@154: prev_out_Q10[ j ] = prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ]; cannam@154: prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ] = out0_Q10; cannam@154: ind_sort[ j ] = j + NLSF_QUANT_DEL_DEC_STATES; cannam@154: } else { cannam@154: RD_min_Q25[ j ] = RD_Q25[ j ]; cannam@154: RD_max_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ]; cannam@154: ind_sort[ j ] = j; cannam@154: } cannam@154: } cannam@154: /* compare the highest RD values of the winning half with the lowest one in the losing half, and copy if necessary */ cannam@154: /* afterwards ind_sort[] will contain the indices of the NLSF_QUANT_DEL_DEC_STATES winning RD values */ cannam@154: while( 1 ) { cannam@154: min_max_Q25 = silk_int32_MAX; cannam@154: max_min_Q25 = 0; cannam@154: ind_min_max = 0; cannam@154: ind_max_min = 0; cannam@154: for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { cannam@154: if( min_max_Q25 > RD_max_Q25[ j ] ) { cannam@154: min_max_Q25 = RD_max_Q25[ j ]; cannam@154: ind_min_max = j; cannam@154: } cannam@154: if( max_min_Q25 < RD_min_Q25[ j ] ) { cannam@154: max_min_Q25 = RD_min_Q25[ j ]; cannam@154: ind_max_min = j; cannam@154: } cannam@154: } cannam@154: if( min_max_Q25 >= max_min_Q25 ) { cannam@154: break; cannam@154: } cannam@154: /* copy ind_min_max to ind_max_min */ cannam@154: ind_sort[ ind_max_min ] = ind_sort[ ind_min_max ] ^ NLSF_QUANT_DEL_DEC_STATES; cannam@154: RD_Q25[ ind_max_min ] = RD_Q25[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ]; cannam@154: prev_out_Q10[ ind_max_min ] = prev_out_Q10[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ]; cannam@154: RD_min_Q25[ ind_max_min ] = 0; cannam@154: RD_max_Q25[ ind_min_max ] = silk_int32_MAX; cannam@154: silk_memcpy( ind[ ind_max_min ], ind[ ind_min_max ], MAX_LPC_ORDER * sizeof( opus_int8 ) ); cannam@154: } cannam@154: /* increment index if it comes from the upper half */ cannam@154: for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { cannam@154: ind[ j ][ i ] += silk_RSHIFT( ind_sort[ j ], NLSF_QUANT_DEL_DEC_STATES_LOG2 ); cannam@154: } cannam@154: } cannam@154: } cannam@154: cannam@154: /* last sample: find winner, copy indices and return RD value */ cannam@154: ind_tmp = 0; cannam@154: min_Q25 = silk_int32_MAX; cannam@154: for( j = 0; j < 2 * NLSF_QUANT_DEL_DEC_STATES; j++ ) { cannam@154: if( min_Q25 > RD_Q25[ j ] ) { cannam@154: min_Q25 = RD_Q25[ j ]; cannam@154: ind_tmp = j; cannam@154: } cannam@154: } cannam@154: for( j = 0; j < order; j++ ) { cannam@154: indices[ j ] = ind[ ind_tmp & ( NLSF_QUANT_DEL_DEC_STATES - 1 ) ][ j ]; cannam@154: silk_assert( indices[ j ] >= -NLSF_QUANT_MAX_AMPLITUDE_EXT ); cannam@154: silk_assert( indices[ j ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT ); cannam@154: } cannam@154: indices[ 0 ] += silk_RSHIFT( ind_tmp, NLSF_QUANT_DEL_DEC_STATES_LOG2 ); cannam@154: silk_assert( indices[ 0 ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT ); cannam@154: silk_assert( min_Q25 >= 0 ); cannam@154: return min_Q25; cannam@154: }