annotate src/fftw-3.3.8/doc/html/Multi_002ddimensional-Transforms.html @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
cannam@167 2 <html>
cannam@167 3 <!-- This manual is for FFTW
cannam@167 4 (version 3.3.8, 24 May 2018).
cannam@167 5
cannam@167 6 Copyright (C) 2003 Matteo Frigo.
cannam@167 7
cannam@167 8 Copyright (C) 2003 Massachusetts Institute of Technology.
cannam@167 9
cannam@167 10 Permission is granted to make and distribute verbatim copies of this
cannam@167 11 manual provided the copyright notice and this permission notice are
cannam@167 12 preserved on all copies.
cannam@167 13
cannam@167 14 Permission is granted to copy and distribute modified versions of this
cannam@167 15 manual under the conditions for verbatim copying, provided that the
cannam@167 16 entire resulting derived work is distributed under the terms of a
cannam@167 17 permission notice identical to this one.
cannam@167 18
cannam@167 19 Permission is granted to copy and distribute translations of this manual
cannam@167 20 into another language, under the above conditions for modified versions,
cannam@167 21 except that this permission notice may be stated in a translation
cannam@167 22 approved by the Free Software Foundation. -->
cannam@167 23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ -->
cannam@167 24 <head>
cannam@167 25 <title>FFTW 3.3.8: Multi-dimensional Transforms</title>
cannam@167 26
cannam@167 27 <meta name="description" content="FFTW 3.3.8: Multi-dimensional Transforms">
cannam@167 28 <meta name="keywords" content="FFTW 3.3.8: Multi-dimensional Transforms">
cannam@167 29 <meta name="resource-type" content="document">
cannam@167 30 <meta name="distribution" content="global">
cannam@167 31 <meta name="Generator" content="makeinfo">
cannam@167 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
cannam@167 33 <link href="index.html#Top" rel="start" title="Top">
cannam@167 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
cannam@167 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
cannam@167 36 <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes">
cannam@167 37 <link href="Multi_002dthreaded-FFTW.html#Multi_002dthreaded-FFTW" rel="next" title="Multi-threaded FFTW">
cannam@167 38 <link href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" rel="prev" title="1d Discrete Hartley Transforms (DHTs)">
cannam@167 39 <style type="text/css">
cannam@167 40 <!--
cannam@167 41 a.summary-letter {text-decoration: none}
cannam@167 42 blockquote.indentedblock {margin-right: 0em}
cannam@167 43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
cannam@167 44 blockquote.smallquotation {font-size: smaller}
cannam@167 45 div.display {margin-left: 3.2em}
cannam@167 46 div.example {margin-left: 3.2em}
cannam@167 47 div.lisp {margin-left: 3.2em}
cannam@167 48 div.smalldisplay {margin-left: 3.2em}
cannam@167 49 div.smallexample {margin-left: 3.2em}
cannam@167 50 div.smalllisp {margin-left: 3.2em}
cannam@167 51 kbd {font-style: oblique}
cannam@167 52 pre.display {font-family: inherit}
cannam@167 53 pre.format {font-family: inherit}
cannam@167 54 pre.menu-comment {font-family: serif}
cannam@167 55 pre.menu-preformatted {font-family: serif}
cannam@167 56 pre.smalldisplay {font-family: inherit; font-size: smaller}
cannam@167 57 pre.smallexample {font-size: smaller}
cannam@167 58 pre.smallformat {font-family: inherit; font-size: smaller}
cannam@167 59 pre.smalllisp {font-size: smaller}
cannam@167 60 span.nolinebreak {white-space: nowrap}
cannam@167 61 span.roman {font-family: initial; font-weight: normal}
cannam@167 62 span.sansserif {font-family: sans-serif; font-weight: normal}
cannam@167 63 ul.no-bullet {list-style: none}
cannam@167 64 -->
cannam@167 65 </style>
cannam@167 66
cannam@167 67
cannam@167 68 </head>
cannam@167 69
cannam@167 70 <body lang="en">
cannam@167 71 <a name="Multi_002ddimensional-Transforms"></a>
cannam@167 72 <div class="header">
cannam@167 73 <p>
cannam@167 74 Previous: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="p" rel="prev">1d Discrete Hartley Transforms (DHTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
cannam@167 75 </div>
cannam@167 76 <hr>
cannam@167 77 <a name="Multi_002ddimensional-Transforms-1"></a>
cannam@167 78 <h4 class="subsection">4.8.6 Multi-dimensional Transforms</h4>
cannam@167 79
cannam@167 80 <p>The multi-dimensional transforms of FFTW, in general, compute simply the
cannam@167 81 separable product of the given 1d transform along each dimension of the
cannam@167 82 array. Since each of these transforms is unnormalized, computing the
cannam@167 83 forward followed by the backward/inverse multi-dimensional transform
cannam@167 84 will result in the original array scaled by the product of the
cannam@167 85 normalization factors for each dimension (e.g. the product of the
cannam@167 86 dimension sizes, for a multi-dimensional DFT).
cannam@167 87 </p>
cannam@167 88
cannam@167 89 <a name="index-r2c-3"></a>
cannam@167 90 <p>The definition of FFTW&rsquo;s multi-dimensional DFT of real data (r2c)
cannam@167 91 deserves special attention. In this case, we logically compute the full
cannam@167 92 multi-dimensional DFT of the input data; since the input data are purely
cannam@167 93 real, the output data have the Hermitian symmetry and therefore only one
cannam@167 94 non-redundant half need be stored. More specifically, for an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>
cannam@167 95 multi-dimensional real-input DFT, the full (logical) complex output array
cannam@167 96 <i>Y</i>[<i>k</i><sub>0</sub>, <i>k</i><sub>1</sub>, ...,
cannam@167 97 <i>k</i><sub><i>d-1</i></sub>]
cannam@167 98 has the symmetry:
cannam@167 99 <i>Y</i>[<i>k</i><sub>0</sub>, <i>k</i><sub>1</sub>, ...,
cannam@167 100 <i>k</i><sub><i>d-1</i></sub>] = <i>Y</i>[<i>n</i><sub>0</sub> -
cannam@167 101 <i>k</i><sub>0</sub>, <i>n</i><sub>1</sub> - <i>k</i><sub>1</sub>, ...,
cannam@167 102 <i>n</i><sub><i>d-1</i></sub> - <i>k</i><sub><i>d-1</i></sub>]<sup>*</sup>
cannam@167 103 (where each dimension is periodic). Because of this symmetry, we only
cannam@167 104 store the
cannam@167 105 <i>k</i><sub><i>d-1</i></sub> = 0...<i>n</i><sub><i>d-1</i></sub>/2+1
cannam@167 106 elements of the <em>last</em> dimension (division by <em>2</em> is rounded
cannam@167 107 down). (We could instead have cut any other dimension in half, but the
cannam@167 108 last dimension proved computationally convenient.) This results in the
cannam@167 109 peculiar array format described in more detail by <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
cannam@167 110 </p>
cannam@167 111 <p>The multi-dimensional c2r transform is simply the unnormalized inverse
cannam@167 112 of the r2c transform. i.e. it is the same as FFTW&rsquo;s complex backward
cannam@167 113 multi-dimensional DFT, operating on a Hermitian input array in the
cannam@167 114 peculiar format mentioned above and outputting a real array (since the
cannam@167 115 DFT output is purely real).
cannam@167 116 </p>
cannam@167 117 <p>We should remind the user that the separable product of 1d transforms
cannam@167 118 along each dimension, as computed by FFTW, is not always the same thing
cannam@167 119 as the usual multi-dimensional transform. A multi-dimensional
cannam@167 120 <code>R2HC</code> (or <code>HC2R</code>) transform is not identical to the
cannam@167 121 multi-dimensional DFT, requiring some post-processing to combine the
cannam@167 122 requisite real and imaginary parts, as was described in <a href="The-Halfcomplex_002dformat-DFT.html#The-Halfcomplex_002dformat-DFT">The Halfcomplex-format DFT</a>. Likewise, FFTW&rsquo;s multidimensional
cannam@167 123 <code>FFTW_DHT</code> r2r transform is not the same thing as the logical
cannam@167 124 multi-dimensional discrete Hartley transform defined in the literature,
cannam@167 125 as discussed in <a href="The-Discrete-Hartley-Transform.html#The-Discrete-Hartley-Transform">The Discrete Hartley Transform</a>.
cannam@167 126 </p>
cannam@167 127 <hr>
cannam@167 128 <div class="header">
cannam@167 129 <p>
cannam@167 130 Previous: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="p" rel="prev">1d Discrete Hartley Transforms (DHTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
cannam@167 131 </div>
cannam@167 132
cannam@167 133
cannam@167 134
cannam@167 135 </body>
cannam@167 136 </html>