Mercurial > hg > sv-dependency-builds
view src/fftw-3.3.8/doc/html/Multi_002ddimensional-Transforms.html @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 (2019-11-19) |
parents | |
children |
line wrap: on
line source
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <!-- This manual is for FFTW (version 3.3.8, 24 May 2018). Copyright (C) 2003 Matteo Frigo. Copyright (C) 2003 Massachusetts Institute of Technology. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. --> <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ --> <head> <title>FFTW 3.3.8: Multi-dimensional Transforms</title> <meta name="description" content="FFTW 3.3.8: Multi-dimensional Transforms"> <meta name="keywords" content="FFTW 3.3.8: Multi-dimensional Transforms"> <meta name="resource-type" content="document"> <meta name="distribution" content="global"> <meta name="Generator" content="makeinfo"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <link href="index.html#Top" rel="start" title="Top"> <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes"> <link href="Multi_002dthreaded-FFTW.html#Multi_002dthreaded-FFTW" rel="next" title="Multi-threaded FFTW"> <link href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" rel="prev" title="1d Discrete Hartley Transforms (DHTs)"> <style type="text/css"> <!-- a.summary-letter {text-decoration: none} blockquote.indentedblock {margin-right: 0em} blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} blockquote.smallquotation {font-size: smaller} div.display {margin-left: 3.2em} div.example {margin-left: 3.2em} div.lisp {margin-left: 3.2em} div.smalldisplay {margin-left: 3.2em} div.smallexample {margin-left: 3.2em} div.smalllisp {margin-left: 3.2em} kbd {font-style: oblique} pre.display {font-family: inherit} pre.format {font-family: inherit} pre.menu-comment {font-family: serif} pre.menu-preformatted {font-family: serif} pre.smalldisplay {font-family: inherit; font-size: smaller} pre.smallexample {font-size: smaller} pre.smallformat {font-family: inherit; font-size: smaller} pre.smalllisp {font-size: smaller} span.nolinebreak {white-space: nowrap} span.roman {font-family: initial; font-weight: normal} span.sansserif {font-family: sans-serif; font-weight: normal} ul.no-bullet {list-style: none} --> </style> </head> <body lang="en"> <a name="Multi_002ddimensional-Transforms"></a> <div class="header"> <p> Previous: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="p" rel="prev">1d Discrete Hartley Transforms (DHTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> </div> <hr> <a name="Multi_002ddimensional-Transforms-1"></a> <h4 class="subsection">4.8.6 Multi-dimensional Transforms</h4> <p>The multi-dimensional transforms of FFTW, in general, compute simply the separable product of the given 1d transform along each dimension of the array. Since each of these transforms is unnormalized, computing the forward followed by the backward/inverse multi-dimensional transform will result in the original array scaled by the product of the normalization factors for each dimension (e.g. the product of the dimension sizes, for a multi-dimensional DFT). </p> <a name="index-r2c-3"></a> <p>The definition of FFTW’s multi-dimensional DFT of real data (r2c) deserves special attention. In this case, we logically compute the full multi-dimensional DFT of the input data; since the input data are purely real, the output data have the Hermitian symmetry and therefore only one non-redundant half need be stored. More specifically, for an n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> multi-dimensional real-input DFT, the full (logical) complex output array <i>Y</i>[<i>k</i><sub>0</sub>, <i>k</i><sub>1</sub>, ..., <i>k</i><sub><i>d-1</i></sub>] has the symmetry: <i>Y</i>[<i>k</i><sub>0</sub>, <i>k</i><sub>1</sub>, ..., <i>k</i><sub><i>d-1</i></sub>] = <i>Y</i>[<i>n</i><sub>0</sub> - <i>k</i><sub>0</sub>, <i>n</i><sub>1</sub> - <i>k</i><sub>1</sub>, ..., <i>n</i><sub><i>d-1</i></sub> - <i>k</i><sub><i>d-1</i></sub>]<sup>*</sup> (where each dimension is periodic). Because of this symmetry, we only store the <i>k</i><sub><i>d-1</i></sub> = 0...<i>n</i><sub><i>d-1</i></sub>/2+1 elements of the <em>last</em> dimension (division by <em>2</em> is rounded down). (We could instead have cut any other dimension in half, but the last dimension proved computationally convenient.) This results in the peculiar array format described in more detail by <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>. </p> <p>The multi-dimensional c2r transform is simply the unnormalized inverse of the r2c transform. i.e. it is the same as FFTW’s complex backward multi-dimensional DFT, operating on a Hermitian input array in the peculiar format mentioned above and outputting a real array (since the DFT output is purely real). </p> <p>We should remind the user that the separable product of 1d transforms along each dimension, as computed by FFTW, is not always the same thing as the usual multi-dimensional transform. A multi-dimensional <code>R2HC</code> (or <code>HC2R</code>) transform is not identical to the multi-dimensional DFT, requiring some post-processing to combine the requisite real and imaginary parts, as was described in <a href="The-Halfcomplex_002dformat-DFT.html#The-Halfcomplex_002dformat-DFT">The Halfcomplex-format DFT</a>. Likewise, FFTW’s multidimensional <code>FFTW_DHT</code> r2r transform is not the same thing as the logical multi-dimensional discrete Hartley transform defined in the literature, as discussed in <a href="The-Discrete-Hartley-Transform.html#The-Discrete-Hartley-Transform">The Discrete Hartley Transform</a>. </p> <hr> <div class="header"> <p> Previous: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="p" rel="prev">1d Discrete Hartley Transforms (DHTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> </div> </body> </html>