cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21
|
cannam@127
|
22 /* plans for RDFT of rank >= 2 (multidimensional) */
|
cannam@127
|
23
|
cannam@127
|
24 /* FIXME: this solver cannot strictly be applied to multidimensional
|
cannam@127
|
25 DHTs, since the latter are not separable...up to rnk-1 additional
|
cannam@127
|
26 post-processing passes may be required. See also:
|
cannam@127
|
27
|
cannam@127
|
28 R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast
|
cannam@127
|
29 two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986).
|
cannam@127
|
30
|
cannam@127
|
31 H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm
|
cannam@127
|
32 using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987).
|
cannam@127
|
33 */
|
cannam@127
|
34
|
cannam@127
|
35 #include "rdft.h"
|
cannam@127
|
36
|
cannam@127
|
37 typedef struct {
|
cannam@127
|
38 solver super;
|
cannam@127
|
39 int spltrnk;
|
cannam@127
|
40 const int *buddies;
|
cannam@127
|
41 size_t nbuddies;
|
cannam@127
|
42 } S;
|
cannam@127
|
43
|
cannam@127
|
44 typedef struct {
|
cannam@127
|
45 plan_rdft super;
|
cannam@127
|
46
|
cannam@127
|
47 plan *cld1, *cld2;
|
cannam@127
|
48 const S *solver;
|
cannam@127
|
49 } P;
|
cannam@127
|
50
|
cannam@127
|
51 /* Compute multi-dimensional RDFT by applying the two cld plans
|
cannam@127
|
52 (lower-rnk RDFTs). */
|
cannam@127
|
53 static void apply(const plan *ego_, R *I, R *O)
|
cannam@127
|
54 {
|
cannam@127
|
55 const P *ego = (const P *) ego_;
|
cannam@127
|
56 plan_rdft *cld1, *cld2;
|
cannam@127
|
57
|
cannam@127
|
58 cld1 = (plan_rdft *) ego->cld1;
|
cannam@127
|
59 cld1->apply(ego->cld1, I, O);
|
cannam@127
|
60
|
cannam@127
|
61 cld2 = (plan_rdft *) ego->cld2;
|
cannam@127
|
62 cld2->apply(ego->cld2, O, O);
|
cannam@127
|
63 }
|
cannam@127
|
64
|
cannam@127
|
65
|
cannam@127
|
66 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@127
|
67 {
|
cannam@127
|
68 P *ego = (P *) ego_;
|
cannam@127
|
69 X(plan_awake)(ego->cld1, wakefulness);
|
cannam@127
|
70 X(plan_awake)(ego->cld2, wakefulness);
|
cannam@127
|
71 }
|
cannam@127
|
72
|
cannam@127
|
73 static void destroy(plan *ego_)
|
cannam@127
|
74 {
|
cannam@127
|
75 P *ego = (P *) ego_;
|
cannam@127
|
76 X(plan_destroy_internal)(ego->cld2);
|
cannam@127
|
77 X(plan_destroy_internal)(ego->cld1);
|
cannam@127
|
78 }
|
cannam@127
|
79
|
cannam@127
|
80 static void print(const plan *ego_, printer *p)
|
cannam@127
|
81 {
|
cannam@127
|
82 const P *ego = (const P *) ego_;
|
cannam@127
|
83 const S *s = ego->solver;
|
cannam@127
|
84 p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))",
|
cannam@127
|
85 s->spltrnk, ego->cld1, ego->cld2);
|
cannam@127
|
86 }
|
cannam@127
|
87
|
cannam@127
|
88 static int picksplit(const S *ego, const tensor *sz, int *rp)
|
cannam@127
|
89 {
|
cannam@127
|
90 A(sz->rnk > 1); /* cannot split rnk <= 1 */
|
cannam@127
|
91 if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp))
|
cannam@127
|
92 return 0;
|
cannam@127
|
93 *rp += 1; /* convert from dim. index to rank */
|
cannam@127
|
94 if (*rp >= sz->rnk) /* split must reduce rank */
|
cannam@127
|
95 return 0;
|
cannam@127
|
96 return 1;
|
cannam@127
|
97 }
|
cannam@127
|
98
|
cannam@127
|
99 static int applicable0(const solver *ego_, const problem *p_, int *rp)
|
cannam@127
|
100 {
|
cannam@127
|
101 const problem_rdft *p = (const problem_rdft *) p_;
|
cannam@127
|
102 const S *ego = (const S *)ego_;
|
cannam@127
|
103 return (1
|
cannam@127
|
104 && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk)
|
cannam@127
|
105 && p->sz->rnk >= 2
|
cannam@127
|
106 && picksplit(ego, p->sz, rp)
|
cannam@127
|
107 );
|
cannam@127
|
108 }
|
cannam@127
|
109
|
cannam@127
|
110 /* TODO: revise this. */
|
cannam@127
|
111 static int applicable(const solver *ego_, const problem *p_,
|
cannam@127
|
112 const planner *plnr, int *rp)
|
cannam@127
|
113 {
|
cannam@127
|
114 const S *ego = (const S *)ego_;
|
cannam@127
|
115
|
cannam@127
|
116 if (!applicable0(ego_, p_, rp)) return 0;
|
cannam@127
|
117
|
cannam@127
|
118 if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0]))
|
cannam@127
|
119 return 0;
|
cannam@127
|
120
|
cannam@127
|
121 if (NO_UGLYP(plnr)) {
|
cannam@127
|
122 /* Heuristic: if the vector stride is greater than the transform
|
cannam@127
|
123 sz, don't use (prefer to do the vector loop first with a
|
cannam@127
|
124 vrank-geq1 plan). */
|
cannam@127
|
125 const problem_rdft *p = (const problem_rdft *) p_;
|
cannam@127
|
126
|
cannam@127
|
127 if (p->vecsz->rnk > 0 &&
|
cannam@127
|
128 X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz))
|
cannam@127
|
129 return 0;
|
cannam@127
|
130 }
|
cannam@127
|
131
|
cannam@127
|
132 return 1;
|
cannam@127
|
133 }
|
cannam@127
|
134
|
cannam@127
|
135 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
cannam@127
|
136 {
|
cannam@127
|
137 const S *ego = (const S *) ego_;
|
cannam@127
|
138 const problem_rdft *p;
|
cannam@127
|
139 P *pln;
|
cannam@127
|
140 plan *cld1 = 0, *cld2 = 0;
|
cannam@127
|
141 tensor *sz1, *sz2, *vecszi, *sz2i;
|
cannam@127
|
142 int spltrnk;
|
cannam@127
|
143
|
cannam@127
|
144 static const plan_adt padt = {
|
cannam@127
|
145 X(rdft_solve), awake, print, destroy
|
cannam@127
|
146 };
|
cannam@127
|
147
|
cannam@127
|
148 if (!applicable(ego_, p_, plnr, &spltrnk))
|
cannam@127
|
149 return (plan *) 0;
|
cannam@127
|
150
|
cannam@127
|
151 p = (const problem_rdft *) p_;
|
cannam@127
|
152 X(tensor_split)(p->sz, &sz1, spltrnk, &sz2);
|
cannam@127
|
153 vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS);
|
cannam@127
|
154 sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS);
|
cannam@127
|
155
|
cannam@127
|
156 cld1 = X(mkplan_d)(plnr,
|
cannam@127
|
157 X(mkproblem_rdft_d)(X(tensor_copy)(sz2),
|
cannam@127
|
158 X(tensor_append)(p->vecsz, sz1),
|
cannam@127
|
159 p->I, p->O, p->kind + spltrnk));
|
cannam@127
|
160 if (!cld1) goto nada;
|
cannam@127
|
161
|
cannam@127
|
162 cld2 = X(mkplan_d)(plnr,
|
cannam@127
|
163 X(mkproblem_rdft_d)(
|
cannam@127
|
164 X(tensor_copy_inplace)(sz1, INPLACE_OS),
|
cannam@127
|
165 X(tensor_append)(vecszi, sz2i),
|
cannam@127
|
166 p->O, p->O, p->kind));
|
cannam@127
|
167 if (!cld2) goto nada;
|
cannam@127
|
168
|
cannam@127
|
169 pln = MKPLAN_RDFT(P, &padt, apply);
|
cannam@127
|
170
|
cannam@127
|
171 pln->cld1 = cld1;
|
cannam@127
|
172 pln->cld2 = cld2;
|
cannam@127
|
173
|
cannam@127
|
174 pln->solver = ego;
|
cannam@127
|
175 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
|
cannam@127
|
176
|
cannam@127
|
177 X(tensor_destroy4)(sz2, sz1, vecszi, sz2i);
|
cannam@127
|
178
|
cannam@127
|
179 return &(pln->super.super);
|
cannam@127
|
180
|
cannam@127
|
181 nada:
|
cannam@127
|
182 X(plan_destroy_internal)(cld2);
|
cannam@127
|
183 X(plan_destroy_internal)(cld1);
|
cannam@127
|
184 X(tensor_destroy4)(sz2, sz1, vecszi, sz2i);
|
cannam@127
|
185 return (plan *) 0;
|
cannam@127
|
186 }
|
cannam@127
|
187
|
cannam@127
|
188 static solver *mksolver(int spltrnk, const int *buddies, size_t nbuddies)
|
cannam@127
|
189 {
|
cannam@127
|
190 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
cannam@127
|
191 S *slv = MKSOLVER(S, &sadt);
|
cannam@127
|
192 slv->spltrnk = spltrnk;
|
cannam@127
|
193 slv->buddies = buddies;
|
cannam@127
|
194 slv->nbuddies = nbuddies;
|
cannam@127
|
195 return &(slv->super);
|
cannam@127
|
196 }
|
cannam@127
|
197
|
cannam@127
|
198 void X(rdft_rank_geq2_register)(planner *p)
|
cannam@127
|
199 {
|
cannam@127
|
200 static const int buddies[] = { 1, 0, -2 };
|
cannam@127
|
201 size_t i;
|
cannam@127
|
202
|
cannam@127
|
203 for (i = 0; i < NELEM(buddies); ++i)
|
cannam@127
|
204 REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies)));
|
cannam@127
|
205
|
cannam@127
|
206 /* FIXME: Should we try more buddies? See also dft/rank-geq2. */
|
cannam@127
|
207 }
|