cannam@127: /* cannam@127: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@127: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@127: * cannam@127: * This program is free software; you can redistribute it and/or modify cannam@127: * it under the terms of the GNU General Public License as published by cannam@127: * the Free Software Foundation; either version 2 of the License, or cannam@127: * (at your option) any later version. cannam@127: * cannam@127: * This program is distributed in the hope that it will be useful, cannam@127: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@127: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@127: * GNU General Public License for more details. cannam@127: * cannam@127: * You should have received a copy of the GNU General Public License cannam@127: * along with this program; if not, write to the Free Software cannam@127: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@127: * cannam@127: */ cannam@127: cannam@127: cannam@127: /* plans for RDFT of rank >= 2 (multidimensional) */ cannam@127: cannam@127: /* FIXME: this solver cannot strictly be applied to multidimensional cannam@127: DHTs, since the latter are not separable...up to rnk-1 additional cannam@127: post-processing passes may be required. See also: cannam@127: cannam@127: R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast cannam@127: two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986). cannam@127: cannam@127: H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm cannam@127: using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987). cannam@127: */ cannam@127: cannam@127: #include "rdft.h" cannam@127: cannam@127: typedef struct { cannam@127: solver super; cannam@127: int spltrnk; cannam@127: const int *buddies; cannam@127: size_t nbuddies; cannam@127: } S; cannam@127: cannam@127: typedef struct { cannam@127: plan_rdft super; cannam@127: cannam@127: plan *cld1, *cld2; cannam@127: const S *solver; cannam@127: } P; cannam@127: cannam@127: /* Compute multi-dimensional RDFT by applying the two cld plans cannam@127: (lower-rnk RDFTs). */ cannam@127: static void apply(const plan *ego_, R *I, R *O) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: plan_rdft *cld1, *cld2; cannam@127: cannam@127: cld1 = (plan_rdft *) ego->cld1; cannam@127: cld1->apply(ego->cld1, I, O); cannam@127: cannam@127: cld2 = (plan_rdft *) ego->cld2; cannam@127: cld2->apply(ego->cld2, O, O); cannam@127: } cannam@127: cannam@127: cannam@127: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: X(plan_awake)(ego->cld1, wakefulness); cannam@127: X(plan_awake)(ego->cld2, wakefulness); cannam@127: } cannam@127: cannam@127: static void destroy(plan *ego_) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: X(plan_destroy_internal)(ego->cld2); cannam@127: X(plan_destroy_internal)(ego->cld1); cannam@127: } cannam@127: cannam@127: static void print(const plan *ego_, printer *p) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: const S *s = ego->solver; cannam@127: p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))", cannam@127: s->spltrnk, ego->cld1, ego->cld2); cannam@127: } cannam@127: cannam@127: static int picksplit(const S *ego, const tensor *sz, int *rp) cannam@127: { cannam@127: A(sz->rnk > 1); /* cannot split rnk <= 1 */ cannam@127: if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp)) cannam@127: return 0; cannam@127: *rp += 1; /* convert from dim. index to rank */ cannam@127: if (*rp >= sz->rnk) /* split must reduce rank */ cannam@127: return 0; cannam@127: return 1; cannam@127: } cannam@127: cannam@127: static int applicable0(const solver *ego_, const problem *p_, int *rp) cannam@127: { cannam@127: const problem_rdft *p = (const problem_rdft *) p_; cannam@127: const S *ego = (const S *)ego_; cannam@127: return (1 cannam@127: && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk) cannam@127: && p->sz->rnk >= 2 cannam@127: && picksplit(ego, p->sz, rp) cannam@127: ); cannam@127: } cannam@127: cannam@127: /* TODO: revise this. */ cannam@127: static int applicable(const solver *ego_, const problem *p_, cannam@127: const planner *plnr, int *rp) cannam@127: { cannam@127: const S *ego = (const S *)ego_; cannam@127: cannam@127: if (!applicable0(ego_, p_, rp)) return 0; cannam@127: cannam@127: if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) cannam@127: return 0; cannam@127: cannam@127: if (NO_UGLYP(plnr)) { cannam@127: /* Heuristic: if the vector stride is greater than the transform cannam@127: sz, don't use (prefer to do the vector loop first with a cannam@127: vrank-geq1 plan). */ cannam@127: const problem_rdft *p = (const problem_rdft *) p_; cannam@127: cannam@127: if (p->vecsz->rnk > 0 && cannam@127: X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz)) cannam@127: return 0; cannam@127: } cannam@127: cannam@127: return 1; cannam@127: } cannam@127: cannam@127: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@127: { cannam@127: const S *ego = (const S *) ego_; cannam@127: const problem_rdft *p; cannam@127: P *pln; cannam@127: plan *cld1 = 0, *cld2 = 0; cannam@127: tensor *sz1, *sz2, *vecszi, *sz2i; cannam@127: int spltrnk; cannam@127: cannam@127: static const plan_adt padt = { cannam@127: X(rdft_solve), awake, print, destroy cannam@127: }; cannam@127: cannam@127: if (!applicable(ego_, p_, plnr, &spltrnk)) cannam@127: return (plan *) 0; cannam@127: cannam@127: p = (const problem_rdft *) p_; cannam@127: X(tensor_split)(p->sz, &sz1, spltrnk, &sz2); cannam@127: vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS); cannam@127: sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS); cannam@127: cannam@127: cld1 = X(mkplan_d)(plnr, cannam@127: X(mkproblem_rdft_d)(X(tensor_copy)(sz2), cannam@127: X(tensor_append)(p->vecsz, sz1), cannam@127: p->I, p->O, p->kind + spltrnk)); cannam@127: if (!cld1) goto nada; cannam@127: cannam@127: cld2 = X(mkplan_d)(plnr, cannam@127: X(mkproblem_rdft_d)( cannam@127: X(tensor_copy_inplace)(sz1, INPLACE_OS), cannam@127: X(tensor_append)(vecszi, sz2i), cannam@127: p->O, p->O, p->kind)); cannam@127: if (!cld2) goto nada; cannam@127: cannam@127: pln = MKPLAN_RDFT(P, &padt, apply); cannam@127: cannam@127: pln->cld1 = cld1; cannam@127: pln->cld2 = cld2; cannam@127: cannam@127: pln->solver = ego; cannam@127: X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); cannam@127: cannam@127: X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); cannam@127: cannam@127: return &(pln->super.super); cannam@127: cannam@127: nada: cannam@127: X(plan_destroy_internal)(cld2); cannam@127: X(plan_destroy_internal)(cld1); cannam@127: X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); cannam@127: return (plan *) 0; cannam@127: } cannam@127: cannam@127: static solver *mksolver(int spltrnk, const int *buddies, size_t nbuddies) cannam@127: { cannam@127: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@127: S *slv = MKSOLVER(S, &sadt); cannam@127: slv->spltrnk = spltrnk; cannam@127: slv->buddies = buddies; cannam@127: slv->nbuddies = nbuddies; cannam@127: return &(slv->super); cannam@127: } cannam@127: cannam@127: void X(rdft_rank_geq2_register)(planner *p) cannam@127: { cannam@127: static const int buddies[] = { 1, 0, -2 }; cannam@127: size_t i; cannam@127: cannam@127: for (i = 0; i < NELEM(buddies); ++i) cannam@127: REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies))); cannam@127: cannam@127: /* FIXME: Should we try more buddies? See also dft/rank-geq2. */ cannam@127: }