annotate src/fftw-3.3.3/rdft/rdft-dht.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21
cannam@95 22 /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This
cannam@95 23 is mainly useful because we can use Rader to compute DHTs of prime
cannam@95 24 sizes. It also allows us to express hc2r problems in terms of r2hc
cannam@95 25 (via dht-r2hc), and to do hc2r problems without destroying the input. */
cannam@95 26
cannam@95 27 #include "rdft.h"
cannam@95 28
cannam@95 29 typedef struct {
cannam@95 30 solver super;
cannam@95 31 } S;
cannam@95 32
cannam@95 33 typedef struct {
cannam@95 34 plan_rdft super;
cannam@95 35 plan *cld;
cannam@95 36 INT is, os;
cannam@95 37 INT n;
cannam@95 38 } P;
cannam@95 39
cannam@95 40 static void apply_r2hc(const plan *ego_, R *I, R *O)
cannam@95 41 {
cannam@95 42 const P *ego = (const P *) ego_;
cannam@95 43 INT os;
cannam@95 44 INT i, n;
cannam@95 45
cannam@95 46 {
cannam@95 47 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@95 48 cld->apply((plan *) cld, I, O);
cannam@95 49 }
cannam@95 50
cannam@95 51 n = ego->n;
cannam@95 52 os = ego->os;
cannam@95 53 for (i = 1; i < n - i; ++i) {
cannam@95 54 E a, b;
cannam@95 55 a = K(0.5) * O[os * i];
cannam@95 56 b = K(0.5) * O[os * (n - i)];
cannam@95 57 O[os * i] = a + b;
cannam@95 58 #if FFT_SIGN == -1
cannam@95 59 O[os * (n - i)] = b - a;
cannam@95 60 #else
cannam@95 61 O[os * (n - i)] = a - b;
cannam@95 62 #endif
cannam@95 63 }
cannam@95 64 }
cannam@95 65
cannam@95 66 /* hc2r, destroying input as usual */
cannam@95 67 static void apply_hc2r(const plan *ego_, R *I, R *O)
cannam@95 68 {
cannam@95 69 const P *ego = (const P *) ego_;
cannam@95 70 INT is = ego->is;
cannam@95 71 INT i, n = ego->n;
cannam@95 72
cannam@95 73 for (i = 1; i < n - i; ++i) {
cannam@95 74 E a, b;
cannam@95 75 a = I[is * i];
cannam@95 76 b = I[is * (n - i)];
cannam@95 77 #if FFT_SIGN == -1
cannam@95 78 I[is * i] = a - b;
cannam@95 79 I[is * (n - i)] = a + b;
cannam@95 80 #else
cannam@95 81 I[is * i] = a + b;
cannam@95 82 I[is * (n - i)] = a - b;
cannam@95 83 #endif
cannam@95 84 }
cannam@95 85
cannam@95 86 {
cannam@95 87 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@95 88 cld->apply((plan *) cld, I, O);
cannam@95 89 }
cannam@95 90 }
cannam@95 91
cannam@95 92 /* hc2r, without destroying input */
cannam@95 93 static void apply_hc2r_save(const plan *ego_, R *I, R *O)
cannam@95 94 {
cannam@95 95 const P *ego = (const P *) ego_;
cannam@95 96 INT is = ego->is, os = ego->os;
cannam@95 97 INT i, n = ego->n;
cannam@95 98
cannam@95 99 O[0] = I[0];
cannam@95 100 for (i = 1; i < n - i; ++i) {
cannam@95 101 E a, b;
cannam@95 102 a = I[is * i];
cannam@95 103 b = I[is * (n - i)];
cannam@95 104 #if FFT_SIGN == -1
cannam@95 105 O[os * i] = a - b;
cannam@95 106 O[os * (n - i)] = a + b;
cannam@95 107 #else
cannam@95 108 O[os * i] = a + b;
cannam@95 109 O[os * (n - i)] = a - b;
cannam@95 110 #endif
cannam@95 111 }
cannam@95 112 if (i == n - i)
cannam@95 113 O[os * i] = I[is * i];
cannam@95 114
cannam@95 115 {
cannam@95 116 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@95 117 cld->apply((plan *) cld, O, O);
cannam@95 118 }
cannam@95 119 }
cannam@95 120
cannam@95 121 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 122 {
cannam@95 123 P *ego = (P *) ego_;
cannam@95 124 X(plan_awake)(ego->cld, wakefulness);
cannam@95 125 }
cannam@95 126
cannam@95 127 static void destroy(plan *ego_)
cannam@95 128 {
cannam@95 129 P *ego = (P *) ego_;
cannam@95 130 X(plan_destroy_internal)(ego->cld);
cannam@95 131 }
cannam@95 132
cannam@95 133 static void print(const plan *ego_, printer *p)
cannam@95 134 {
cannam@95 135 const P *ego = (const P *) ego_;
cannam@95 136 p->print(p, "(%s-dht-%D%(%p%))",
cannam@95 137 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
cannam@95 138 ego->n, ego->cld);
cannam@95 139 }
cannam@95 140
cannam@95 141 static int applicable0(const solver *ego_, const problem *p_)
cannam@95 142 {
cannam@95 143 const problem_rdft *p = (const problem_rdft *) p_;
cannam@95 144 UNUSED(ego_);
cannam@95 145
cannam@95 146 return (1
cannam@95 147 && p->sz->rnk == 1
cannam@95 148 && p->vecsz->rnk == 0
cannam@95 149 && (p->kind[0] == R2HC || p->kind[0] == HC2R)
cannam@95 150
cannam@95 151 /* hack: size-2 DHT etc. are defined as being equivalent
cannam@95 152 to size-2 R2HC in problem.c, so we need this to prevent
cannam@95 153 infinite loops for size 2 in EXHAUSTIVE mode: */
cannam@95 154 && p->sz->dims[0].n > 2
cannam@95 155 );
cannam@95 156 }
cannam@95 157
cannam@95 158 static int applicable(const solver *ego, const problem *p_,
cannam@95 159 const planner *plnr)
cannam@95 160 {
cannam@95 161 return (!NO_SLOWP(plnr) && applicable0(ego, p_));
cannam@95 162 }
cannam@95 163
cannam@95 164 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 165 {
cannam@95 166 P *pln;
cannam@95 167 const problem_rdft *p;
cannam@95 168 problem *cldp;
cannam@95 169 plan *cld;
cannam@95 170
cannam@95 171 static const plan_adt padt = {
cannam@95 172 X(rdft_solve), awake, print, destroy
cannam@95 173 };
cannam@95 174
cannam@95 175 if (!applicable(ego_, p_, plnr))
cannam@95 176 return (plan *)0;
cannam@95 177
cannam@95 178 p = (const problem_rdft *) p_;
cannam@95 179
cannam@95 180 if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr))
cannam@95 181 cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT);
cannam@95 182 else {
cannam@95 183 tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS);
cannam@95 184 cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT);
cannam@95 185 X(tensor_destroy)(sz);
cannam@95 186 }
cannam@95 187 cld = X(mkplan_d)(plnr, cldp);
cannam@95 188 if (!cld) return (plan *)0;
cannam@95 189
cannam@95 190 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ?
cannam@95 191 apply_r2hc : (NO_DESTROY_INPUTP(plnr) ?
cannam@95 192 apply_hc2r_save : apply_hc2r));
cannam@95 193 pln->n = p->sz->dims[0].n;
cannam@95 194 pln->is = p->sz->dims[0].is;
cannam@95 195 pln->os = p->sz->dims[0].os;
cannam@95 196 pln->cld = cld;
cannam@95 197
cannam@95 198 pln->super.super.ops = cld->ops;
cannam@95 199 pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
cannam@95 200 pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
cannam@95 201 if (p->kind[0] == R2HC)
cannam@95 202 pln->super.super.ops.mul += 2 * ((pln->n - 1)/2);
cannam@95 203 if (pln->super.apply == apply_hc2r_save)
cannam@95 204 pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2);
cannam@95 205
cannam@95 206 return &(pln->super.super);
cannam@95 207 }
cannam@95 208
cannam@95 209 /* constructor */
cannam@95 210 static solver *mksolver(void)
cannam@95 211 {
cannam@95 212 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@95 213 S *slv = MKSOLVER(S, &sadt);
cannam@95 214 return &(slv->super);
cannam@95 215 }
cannam@95 216
cannam@95 217 void X(rdft_dht_register)(planner *p)
cannam@95 218 {
cannam@95 219 REGISTER_SOLVER(p, mksolver());
cannam@95 220 }