cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: cannam@95: /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This cannam@95: is mainly useful because we can use Rader to compute DHTs of prime cannam@95: sizes. It also allows us to express hc2r problems in terms of r2hc cannam@95: (via dht-r2hc), and to do hc2r problems without destroying the input. */ cannam@95: cannam@95: #include "rdft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_rdft super; cannam@95: plan *cld; cannam@95: INT is, os; cannam@95: INT n; cannam@95: } P; cannam@95: cannam@95: static void apply_r2hc(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT os; cannam@95: INT i, n; cannam@95: cannam@95: { cannam@95: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@95: cld->apply((plan *) cld, I, O); cannam@95: } cannam@95: cannam@95: n = ego->n; cannam@95: os = ego->os; cannam@95: for (i = 1; i < n - i; ++i) { cannam@95: E a, b; cannam@95: a = K(0.5) * O[os * i]; cannam@95: b = K(0.5) * O[os * (n - i)]; cannam@95: O[os * i] = a + b; cannam@95: #if FFT_SIGN == -1 cannam@95: O[os * (n - i)] = b - a; cannam@95: #else cannam@95: O[os * (n - i)] = a - b; cannam@95: #endif cannam@95: } cannam@95: } cannam@95: cannam@95: /* hc2r, destroying input as usual */ cannam@95: static void apply_hc2r(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT is = ego->is; cannam@95: INT i, n = ego->n; cannam@95: cannam@95: for (i = 1; i < n - i; ++i) { cannam@95: E a, b; cannam@95: a = I[is * i]; cannam@95: b = I[is * (n - i)]; cannam@95: #if FFT_SIGN == -1 cannam@95: I[is * i] = a - b; cannam@95: I[is * (n - i)] = a + b; cannam@95: #else cannam@95: I[is * i] = a + b; cannam@95: I[is * (n - i)] = a - b; cannam@95: #endif cannam@95: } cannam@95: cannam@95: { cannam@95: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@95: cld->apply((plan *) cld, I, O); cannam@95: } cannam@95: } cannam@95: cannam@95: /* hc2r, without destroying input */ cannam@95: static void apply_hc2r_save(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT is = ego->is, os = ego->os; cannam@95: INT i, n = ego->n; cannam@95: cannam@95: O[0] = I[0]; cannam@95: for (i = 1; i < n - i; ++i) { cannam@95: E a, b; cannam@95: a = I[is * i]; cannam@95: b = I[is * (n - i)]; cannam@95: #if FFT_SIGN == -1 cannam@95: O[os * i] = a - b; cannam@95: O[os * (n - i)] = a + b; cannam@95: #else cannam@95: O[os * i] = a + b; cannam@95: O[os * (n - i)] = a - b; cannam@95: #endif cannam@95: } cannam@95: if (i == n - i) cannam@95: O[os * i] = I[is * i]; cannam@95: cannam@95: { cannam@95: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@95: cld->apply((plan *) cld, O, O); cannam@95: } cannam@95: } cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_awake)(ego->cld, wakefulness); cannam@95: } cannam@95: cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_destroy_internal)(ego->cld); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: p->print(p, "(%s-dht-%D%(%p%))", cannam@95: ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", cannam@95: ego->n, ego->cld); cannam@95: } cannam@95: cannam@95: static int applicable0(const solver *ego_, const problem *p_) cannam@95: { cannam@95: const problem_rdft *p = (const problem_rdft *) p_; cannam@95: UNUSED(ego_); cannam@95: cannam@95: return (1 cannam@95: && p->sz->rnk == 1 cannam@95: && p->vecsz->rnk == 0 cannam@95: && (p->kind[0] == R2HC || p->kind[0] == HC2R) cannam@95: cannam@95: /* hack: size-2 DHT etc. are defined as being equivalent cannam@95: to size-2 R2HC in problem.c, so we need this to prevent cannam@95: infinite loops for size 2 in EXHAUSTIVE mode: */ cannam@95: && p->sz->dims[0].n > 2 cannam@95: ); cannam@95: } cannam@95: cannam@95: static int applicable(const solver *ego, const problem *p_, cannam@95: const planner *plnr) cannam@95: { cannam@95: return (!NO_SLOWP(plnr) && applicable0(ego, p_)); cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: P *pln; cannam@95: const problem_rdft *p; cannam@95: problem *cldp; cannam@95: plan *cld; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(rdft_solve), awake, print, destroy cannam@95: }; cannam@95: cannam@95: if (!applicable(ego_, p_, plnr)) cannam@95: return (plan *)0; cannam@95: cannam@95: p = (const problem_rdft *) p_; cannam@95: cannam@95: if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr)) cannam@95: cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); cannam@95: else { cannam@95: tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); cannam@95: cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); cannam@95: X(tensor_destroy)(sz); cannam@95: } cannam@95: cld = X(mkplan_d)(plnr, cldp); cannam@95: if (!cld) return (plan *)0; cannam@95: cannam@95: pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? cannam@95: apply_r2hc : (NO_DESTROY_INPUTP(plnr) ? cannam@95: apply_hc2r_save : apply_hc2r)); cannam@95: pln->n = p->sz->dims[0].n; cannam@95: pln->is = p->sz->dims[0].is; cannam@95: pln->os = p->sz->dims[0].os; cannam@95: pln->cld = cld; cannam@95: cannam@95: pln->super.super.ops = cld->ops; cannam@95: pln->super.super.ops.other += 4 * ((pln->n - 1)/2); cannam@95: pln->super.super.ops.add += 2 * ((pln->n - 1)/2); cannam@95: if (p->kind[0] == R2HC) cannam@95: pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); cannam@95: if (pln->super.apply == apply_hc2r_save) cannam@95: pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); cannam@95: cannam@95: return &(pln->super.super); cannam@95: } cannam@95: cannam@95: /* constructor */ cannam@95: static solver *mksolver(void) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void X(rdft_dht_register)(planner *p) cannam@95: { cannam@95: REGISTER_SOLVER(p, mksolver()); cannam@95: }