annotate src/fftw-3.3.3/rdft/direct-r2c.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21
cannam@95 22 /* direct RDFT solver, using r2c codelets */
cannam@95 23
cannam@95 24 #include "rdft.h"
cannam@95 25
cannam@95 26 typedef struct {
cannam@95 27 solver super;
cannam@95 28 const kr2c_desc *desc;
cannam@95 29 kr2c k;
cannam@95 30 int bufferedp;
cannam@95 31 } S;
cannam@95 32
cannam@95 33 typedef struct {
cannam@95 34 plan_rdft super;
cannam@95 35
cannam@95 36 stride rs, csr, csi;
cannam@95 37 stride brs, bcsr, bcsi;
cannam@95 38 INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
cannam@95 39 kr2c k;
cannam@95 40 const S *slv;
cannam@95 41 } P;
cannam@95 42
cannam@95 43 /*************************************************************
cannam@95 44 Nonbuffered code
cannam@95 45 *************************************************************/
cannam@95 46 static void apply_r2hc(const plan *ego_, R *I, R *O)
cannam@95 47 {
cannam@95 48 const P *ego = (const P *) ego_;
cannam@95 49 ASSERT_ALIGNED_DOUBLE;
cannam@95 50 ego->k(I, I + ego->rs0, O, O + ego->ioffset,
cannam@95 51 ego->rs, ego->csr, ego->csi,
cannam@95 52 ego->vl, ego->ivs, ego->ovs);
cannam@95 53 }
cannam@95 54
cannam@95 55 static void apply_hc2r(const plan *ego_, R *I, R *O)
cannam@95 56 {
cannam@95 57 const P *ego = (const P *) ego_;
cannam@95 58 ASSERT_ALIGNED_DOUBLE;
cannam@95 59 ego->k(O, O + ego->rs0, I, I + ego->ioffset,
cannam@95 60 ego->rs, ego->csr, ego->csi,
cannam@95 61 ego->vl, ego->ivs, ego->ovs);
cannam@95 62 }
cannam@95 63
cannam@95 64 /*************************************************************
cannam@95 65 Buffered code
cannam@95 66 *************************************************************/
cannam@95 67 /* should not be 2^k to avoid associativity conflicts */
cannam@95 68 static INT compute_batchsize(INT radix)
cannam@95 69 {
cannam@95 70 /* round up to multiple of 4 */
cannam@95 71 radix += 3;
cannam@95 72 radix &= -4;
cannam@95 73
cannam@95 74 return (radix + 2);
cannam@95 75 }
cannam@95 76
cannam@95 77 static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
cannam@95 78 {
cannam@95 79 X(cpy2d_ci)(I, buf,
cannam@95 80 ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
cannam@95 81 batchsz, ego->ivs, 1, 1);
cannam@95 82
cannam@95 83 if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
cannam@95 84 /* transform directly to output */
cannam@95 85 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@95 86 O, O + ego->ioffset,
cannam@95 87 ego->brs, ego->csr, ego->csi,
cannam@95 88 batchsz, 1, ego->ovs);
cannam@95 89 } else {
cannam@95 90 /* transform to buffer and copy back */
cannam@95 91 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@95 92 buf, buf + ego->bioffset,
cannam@95 93 ego->brs, ego->bcsr, ego->bcsi,
cannam@95 94 batchsz, 1, 1);
cannam@95 95 X(cpy2d_co)(buf, O,
cannam@95 96 ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),
cannam@95 97 batchsz, 1, ego->ovs, 1);
cannam@95 98 }
cannam@95 99 }
cannam@95 100
cannam@95 101 static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
cannam@95 102 {
cannam@95 103 if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
cannam@95 104 /* transform directly from input */
cannam@95 105 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@95 106 I, I + ego->ioffset,
cannam@95 107 ego->brs, ego->csr, ego->csi,
cannam@95 108 batchsz, ego->ivs, 1);
cannam@95 109 } else {
cannam@95 110 /* copy into buffer and transform in place */
cannam@95 111 X(cpy2d_ci)(I, buf,
cannam@95 112 ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
cannam@95 113 batchsz, ego->ivs, 1, 1);
cannam@95 114 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@95 115 buf, buf + ego->bioffset,
cannam@95 116 ego->brs, ego->bcsr, ego->bcsi,
cannam@95 117 batchsz, 1, 1);
cannam@95 118 }
cannam@95 119 X(cpy2d_co)(buf, O,
cannam@95 120 ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
cannam@95 121 batchsz, 1, ego->ovs, 1);
cannam@95 122 }
cannam@95 123
cannam@95 124 static void iterate(const P *ego, R *I, R *O,
cannam@95 125 void (*dobatch)(const P *ego, R *I, R *O,
cannam@95 126 R *buf, INT batchsz))
cannam@95 127 {
cannam@95 128 R *buf;
cannam@95 129 INT vl = ego->vl;
cannam@95 130 INT n = ego->n;
cannam@95 131 INT i;
cannam@95 132 INT batchsz = compute_batchsize(n);
cannam@95 133 size_t bufsz = n * batchsz * sizeof(R);
cannam@95 134
cannam@95 135 BUF_ALLOC(R *, buf, bufsz);
cannam@95 136
cannam@95 137 for (i = 0; i < vl - batchsz; i += batchsz) {
cannam@95 138 dobatch(ego, I, O, buf, batchsz);
cannam@95 139 I += batchsz * ego->ivs;
cannam@95 140 O += batchsz * ego->ovs;
cannam@95 141 }
cannam@95 142 dobatch(ego, I, O, buf, vl - i);
cannam@95 143
cannam@95 144 BUF_FREE(buf, bufsz);
cannam@95 145 }
cannam@95 146
cannam@95 147 static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
cannam@95 148 {
cannam@95 149 iterate((const P *) ego_, I, O, dobatch_r2hc);
cannam@95 150 }
cannam@95 151
cannam@95 152 static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
cannam@95 153 {
cannam@95 154 iterate((const P *) ego_, I, O, dobatch_hc2r);
cannam@95 155 }
cannam@95 156
cannam@95 157 static void destroy(plan *ego_)
cannam@95 158 {
cannam@95 159 P *ego = (P *) ego_;
cannam@95 160 X(stride_destroy)(ego->rs);
cannam@95 161 X(stride_destroy)(ego->csr);
cannam@95 162 X(stride_destroy)(ego->csi);
cannam@95 163 X(stride_destroy)(ego->brs);
cannam@95 164 X(stride_destroy)(ego->bcsr);
cannam@95 165 X(stride_destroy)(ego->bcsi);
cannam@95 166 }
cannam@95 167
cannam@95 168 static void print(const plan *ego_, printer *p)
cannam@95 169 {
cannam@95 170 const P *ego = (const P *) ego_;
cannam@95 171 const S *s = ego->slv;
cannam@95 172
cannam@95 173 if (ego->slv->bufferedp)
cannam@95 174 p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")",
cannam@95 175 X(rdft_kind_str)(s->desc->genus->kind),
cannam@95 176 /* hack */ WS(ego->bcsr, 1), ego->n,
cannam@95 177 ego->vl, s->desc->nam);
cannam@95 178
cannam@95 179 else
cannam@95 180 p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")",
cannam@95 181 X(rdft_kind_str)(s->desc->genus->kind), ego->n,
cannam@95 182 ego->vl, s->desc->nam);
cannam@95 183 }
cannam@95 184
cannam@95 185 static INT ioffset(rdft_kind kind, INT sz, INT s)
cannam@95 186 {
cannam@95 187 return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
cannam@95 188 }
cannam@95 189
cannam@95 190 static int applicable(const solver *ego_, const problem *p_)
cannam@95 191 {
cannam@95 192 const S *ego = (const S *) ego_;
cannam@95 193 const kr2c_desc *desc = ego->desc;
cannam@95 194 const problem_rdft *p = (const problem_rdft *) p_;
cannam@95 195 INT vl, ivs, ovs;
cannam@95 196
cannam@95 197 return (
cannam@95 198 1
cannam@95 199 && p->sz->rnk == 1
cannam@95 200 && p->vecsz->rnk <= 1
cannam@95 201 && p->sz->dims[0].n == desc->n
cannam@95 202 && p->kind[0] == desc->genus->kind
cannam@95 203
cannam@95 204 /* check strides etc */
cannam@95 205 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@95 206
cannam@95 207 && (0
cannam@95 208 /* can operate out-of-place */
cannam@95 209 || p->I != p->O
cannam@95 210
cannam@95 211 /* computing one transform */
cannam@95 212 || vl == 1
cannam@95 213
cannam@95 214 /* can operate in-place as long as strides are the same */
cannam@95 215 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@95 216 )
cannam@95 217 );
cannam@95 218 }
cannam@95 219
cannam@95 220 static int applicable_buf(const solver *ego_, const problem *p_)
cannam@95 221 {
cannam@95 222 const S *ego = (const S *) ego_;
cannam@95 223 const kr2c_desc *desc = ego->desc;
cannam@95 224 const problem_rdft *p = (const problem_rdft *) p_;
cannam@95 225 INT vl, ivs, ovs, batchsz;
cannam@95 226
cannam@95 227 return (
cannam@95 228 1
cannam@95 229 && p->sz->rnk == 1
cannam@95 230 && p->vecsz->rnk <= 1
cannam@95 231 && p->sz->dims[0].n == desc->n
cannam@95 232 && p->kind[0] == desc->genus->kind
cannam@95 233
cannam@95 234 /* check strides etc */
cannam@95 235 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@95 236
cannam@95 237 && (batchsz = compute_batchsize(desc->n), 1)
cannam@95 238
cannam@95 239 && (0
cannam@95 240 /* can operate out-of-place */
cannam@95 241 || p->I != p->O
cannam@95 242
cannam@95 243 /* can operate in-place as long as strides are the same */
cannam@95 244 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@95 245
cannam@95 246 /* can do it if the problem fits in the buffer, no matter
cannam@95 247 what the strides are */
cannam@95 248 || vl <= batchsz
cannam@95 249 )
cannam@95 250 );
cannam@95 251 }
cannam@95 252
cannam@95 253 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 254 {
cannam@95 255 const S *ego = (const S *) ego_;
cannam@95 256 P *pln;
cannam@95 257 const problem_rdft *p;
cannam@95 258 iodim *d;
cannam@95 259 INT rs, cs, b, n;
cannam@95 260
cannam@95 261 static const plan_adt padt = {
cannam@95 262 X(rdft_solve), X(null_awake), print, destroy
cannam@95 263 };
cannam@95 264
cannam@95 265 UNUSED(plnr);
cannam@95 266
cannam@95 267 if (ego->bufferedp) {
cannam@95 268 if (!applicable_buf(ego_, p_))
cannam@95 269 return (plan *)0;
cannam@95 270 } else {
cannam@95 271 if (!applicable(ego_, p_))
cannam@95 272 return (plan *)0;
cannam@95 273 }
cannam@95 274
cannam@95 275 p = (const problem_rdft *) p_;
cannam@95 276
cannam@95 277 if (R2HC_KINDP(p->kind[0])) {
cannam@95 278 rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
cannam@95 279 pln = MKPLAN_RDFT(P, &padt,
cannam@95 280 ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
cannam@95 281 } else {
cannam@95 282 rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
cannam@95 283 pln = MKPLAN_RDFT(P, &padt,
cannam@95 284 ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
cannam@95 285 }
cannam@95 286
cannam@95 287 d = p->sz->dims;
cannam@95 288 n = d[0].n;
cannam@95 289
cannam@95 290 pln->k = ego->k;
cannam@95 291 pln->n = n;
cannam@95 292
cannam@95 293 pln->rs0 = rs;
cannam@95 294 pln->rs = X(mkstride)(n, 2 * rs);
cannam@95 295 pln->csr = X(mkstride)(n, cs);
cannam@95 296 pln->csi = X(mkstride)(n, -cs);
cannam@95 297 pln->ioffset = ioffset(p->kind[0], n, cs);
cannam@95 298
cannam@95 299 b = compute_batchsize(n);
cannam@95 300 pln->brs = X(mkstride)(n, 2 * b);
cannam@95 301 pln->bcsr = X(mkstride)(n, b);
cannam@95 302 pln->bcsi = X(mkstride)(n, -b);
cannam@95 303 pln->bioffset = ioffset(p->kind[0], n, b);
cannam@95 304
cannam@95 305 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@95 306
cannam@95 307 pln->slv = ego;
cannam@95 308 X(ops_zero)(&pln->super.super.ops);
cannam@95 309
cannam@95 310 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
cannam@95 311 &ego->desc->ops,
cannam@95 312 &pln->super.super.ops);
cannam@95 313
cannam@95 314 if (ego->bufferedp)
cannam@95 315 pln->super.super.ops.other += 2 * n * pln->vl;
cannam@95 316
cannam@95 317 pln->super.super.could_prune_now_p = !ego->bufferedp;
cannam@95 318
cannam@95 319 return &(pln->super.super);
cannam@95 320 }
cannam@95 321
cannam@95 322 /* constructor */
cannam@95 323 static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
cannam@95 324 {
cannam@95 325 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@95 326 S *slv = MKSOLVER(S, &sadt);
cannam@95 327 slv->k = k;
cannam@95 328 slv->desc = desc;
cannam@95 329 slv->bufferedp = bufferedp;
cannam@95 330 return &(slv->super);
cannam@95 331 }
cannam@95 332
cannam@95 333 solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
cannam@95 334 {
cannam@95 335 return mksolver(k, desc, 0);
cannam@95 336 }
cannam@95 337
cannam@95 338 solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
cannam@95 339 {
cannam@95 340 return mksolver(k, desc, 1);
cannam@95 341 }