cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: cannam@95: /* direct RDFT solver, using r2c codelets */ cannam@95: cannam@95: #include "rdft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: const kr2c_desc *desc; cannam@95: kr2c k; cannam@95: int bufferedp; cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_rdft super; cannam@95: cannam@95: stride rs, csr, csi; cannam@95: stride brs, bcsr, bcsi; cannam@95: INT n, vl, rs0, ivs, ovs, ioffset, bioffset; cannam@95: kr2c k; cannam@95: const S *slv; cannam@95: } P; cannam@95: cannam@95: /************************************************************* cannam@95: Nonbuffered code cannam@95: *************************************************************/ cannam@95: static void apply_r2hc(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: ASSERT_ALIGNED_DOUBLE; cannam@95: ego->k(I, I + ego->rs0, O, O + ego->ioffset, cannam@95: ego->rs, ego->csr, ego->csi, cannam@95: ego->vl, ego->ivs, ego->ovs); cannam@95: } cannam@95: cannam@95: static void apply_hc2r(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: ASSERT_ALIGNED_DOUBLE; cannam@95: ego->k(O, O + ego->rs0, I, I + ego->ioffset, cannam@95: ego->rs, ego->csr, ego->csi, cannam@95: ego->vl, ego->ivs, ego->ovs); cannam@95: } cannam@95: cannam@95: /************************************************************* cannam@95: Buffered code cannam@95: *************************************************************/ cannam@95: /* should not be 2^k to avoid associativity conflicts */ cannam@95: static INT compute_batchsize(INT radix) cannam@95: { cannam@95: /* round up to multiple of 4 */ cannam@95: radix += 3; cannam@95: radix &= -4; cannam@95: cannam@95: return (radix + 2); cannam@95: } cannam@95: cannam@95: static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz) cannam@95: { cannam@95: X(cpy2d_ci)(I, buf, cannam@95: ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1), cannam@95: batchsz, ego->ivs, 1, 1); cannam@95: cannam@95: if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) { cannam@95: /* transform directly to output */ cannam@95: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), cannam@95: O, O + ego->ioffset, cannam@95: ego->brs, ego->csr, ego->csi, cannam@95: batchsz, 1, ego->ovs); cannam@95: } else { cannam@95: /* transform to buffer and copy back */ cannam@95: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), cannam@95: buf, buf + ego->bioffset, cannam@95: ego->brs, ego->bcsr, ego->bcsi, cannam@95: batchsz, 1, 1); cannam@95: X(cpy2d_co)(buf, O, cannam@95: ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1), cannam@95: batchsz, 1, ego->ovs, 1); cannam@95: } cannam@95: } cannam@95: cannam@95: static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz) cannam@95: { cannam@95: if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) { cannam@95: /* transform directly from input */ cannam@95: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), cannam@95: I, I + ego->ioffset, cannam@95: ego->brs, ego->csr, ego->csi, cannam@95: batchsz, ego->ivs, 1); cannam@95: } else { cannam@95: /* copy into buffer and transform in place */ cannam@95: X(cpy2d_ci)(I, buf, cannam@95: ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1), cannam@95: batchsz, ego->ivs, 1, 1); cannam@95: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), cannam@95: buf, buf + ego->bioffset, cannam@95: ego->brs, ego->bcsr, ego->bcsi, cannam@95: batchsz, 1, 1); cannam@95: } cannam@95: X(cpy2d_co)(buf, O, cannam@95: ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0, cannam@95: batchsz, 1, ego->ovs, 1); cannam@95: } cannam@95: cannam@95: static void iterate(const P *ego, R *I, R *O, cannam@95: void (*dobatch)(const P *ego, R *I, R *O, cannam@95: R *buf, INT batchsz)) cannam@95: { cannam@95: R *buf; cannam@95: INT vl = ego->vl; cannam@95: INT n = ego->n; cannam@95: INT i; cannam@95: INT batchsz = compute_batchsize(n); cannam@95: size_t bufsz = n * batchsz * sizeof(R); cannam@95: cannam@95: BUF_ALLOC(R *, buf, bufsz); cannam@95: cannam@95: for (i = 0; i < vl - batchsz; i += batchsz) { cannam@95: dobatch(ego, I, O, buf, batchsz); cannam@95: I += batchsz * ego->ivs; cannam@95: O += batchsz * ego->ovs; cannam@95: } cannam@95: dobatch(ego, I, O, buf, vl - i); cannam@95: cannam@95: BUF_FREE(buf, bufsz); cannam@95: } cannam@95: cannam@95: static void apply_buf_r2hc(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: iterate((const P *) ego_, I, O, dobatch_r2hc); cannam@95: } cannam@95: cannam@95: static void apply_buf_hc2r(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: iterate((const P *) ego_, I, O, dobatch_hc2r); cannam@95: } cannam@95: cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(stride_destroy)(ego->rs); cannam@95: X(stride_destroy)(ego->csr); cannam@95: X(stride_destroy)(ego->csi); cannam@95: X(stride_destroy)(ego->brs); cannam@95: X(stride_destroy)(ego->bcsr); cannam@95: X(stride_destroy)(ego->bcsi); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: const S *s = ego->slv; cannam@95: cannam@95: if (ego->slv->bufferedp) cannam@95: p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")", cannam@95: X(rdft_kind_str)(s->desc->genus->kind), cannam@95: /* hack */ WS(ego->bcsr, 1), ego->n, cannam@95: ego->vl, s->desc->nam); cannam@95: cannam@95: else cannam@95: p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")", cannam@95: X(rdft_kind_str)(s->desc->genus->kind), ego->n, cannam@95: ego->vl, s->desc->nam); cannam@95: } cannam@95: cannam@95: static INT ioffset(rdft_kind kind, INT sz, INT s) cannam@95: { cannam@95: return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1))); cannam@95: } cannam@95: cannam@95: static int applicable(const solver *ego_, const problem *p_) cannam@95: { cannam@95: const S *ego = (const S *) ego_; cannam@95: const kr2c_desc *desc = ego->desc; cannam@95: const problem_rdft *p = (const problem_rdft *) p_; cannam@95: INT vl, ivs, ovs; cannam@95: cannam@95: return ( cannam@95: 1 cannam@95: && p->sz->rnk == 1 cannam@95: && p->vecsz->rnk <= 1 cannam@95: && p->sz->dims[0].n == desc->n cannam@95: && p->kind[0] == desc->genus->kind cannam@95: cannam@95: /* check strides etc */ cannam@95: && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) cannam@95: cannam@95: && (0 cannam@95: /* can operate out-of-place */ cannam@95: || p->I != p->O cannam@95: cannam@95: /* computing one transform */ cannam@95: || vl == 1 cannam@95: cannam@95: /* can operate in-place as long as strides are the same */ cannam@95: || X(tensor_inplace_strides2)(p->sz, p->vecsz) cannam@95: ) cannam@95: ); cannam@95: } cannam@95: cannam@95: static int applicable_buf(const solver *ego_, const problem *p_) cannam@95: { cannam@95: const S *ego = (const S *) ego_; cannam@95: const kr2c_desc *desc = ego->desc; cannam@95: const problem_rdft *p = (const problem_rdft *) p_; cannam@95: INT vl, ivs, ovs, batchsz; cannam@95: cannam@95: return ( cannam@95: 1 cannam@95: && p->sz->rnk == 1 cannam@95: && p->vecsz->rnk <= 1 cannam@95: && p->sz->dims[0].n == desc->n cannam@95: && p->kind[0] == desc->genus->kind cannam@95: cannam@95: /* check strides etc */ cannam@95: && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) cannam@95: cannam@95: && (batchsz = compute_batchsize(desc->n), 1) cannam@95: cannam@95: && (0 cannam@95: /* can operate out-of-place */ cannam@95: || p->I != p->O cannam@95: cannam@95: /* can operate in-place as long as strides are the same */ cannam@95: || X(tensor_inplace_strides2)(p->sz, p->vecsz) cannam@95: cannam@95: /* can do it if the problem fits in the buffer, no matter cannam@95: what the strides are */ cannam@95: || vl <= batchsz cannam@95: ) cannam@95: ); cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: const S *ego = (const S *) ego_; cannam@95: P *pln; cannam@95: const problem_rdft *p; cannam@95: iodim *d; cannam@95: INT rs, cs, b, n; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(rdft_solve), X(null_awake), print, destroy cannam@95: }; cannam@95: cannam@95: UNUSED(plnr); cannam@95: cannam@95: if (ego->bufferedp) { cannam@95: if (!applicable_buf(ego_, p_)) cannam@95: return (plan *)0; cannam@95: } else { cannam@95: if (!applicable(ego_, p_)) cannam@95: return (plan *)0; cannam@95: } cannam@95: cannam@95: p = (const problem_rdft *) p_; cannam@95: cannam@95: if (R2HC_KINDP(p->kind[0])) { cannam@95: rs = p->sz->dims[0].is; cs = p->sz->dims[0].os; cannam@95: pln = MKPLAN_RDFT(P, &padt, cannam@95: ego->bufferedp ? apply_buf_r2hc : apply_r2hc); cannam@95: } else { cannam@95: rs = p->sz->dims[0].os; cs = p->sz->dims[0].is; cannam@95: pln = MKPLAN_RDFT(P, &padt, cannam@95: ego->bufferedp ? apply_buf_hc2r : apply_hc2r); cannam@95: } cannam@95: cannam@95: d = p->sz->dims; cannam@95: n = d[0].n; cannam@95: cannam@95: pln->k = ego->k; cannam@95: pln->n = n; cannam@95: cannam@95: pln->rs0 = rs; cannam@95: pln->rs = X(mkstride)(n, 2 * rs); cannam@95: pln->csr = X(mkstride)(n, cs); cannam@95: pln->csi = X(mkstride)(n, -cs); cannam@95: pln->ioffset = ioffset(p->kind[0], n, cs); cannam@95: cannam@95: b = compute_batchsize(n); cannam@95: pln->brs = X(mkstride)(n, 2 * b); cannam@95: pln->bcsr = X(mkstride)(n, b); cannam@95: pln->bcsi = X(mkstride)(n, -b); cannam@95: pln->bioffset = ioffset(p->kind[0], n, b); cannam@95: cannam@95: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); cannam@95: cannam@95: pln->slv = ego; cannam@95: X(ops_zero)(&pln->super.super.ops); cannam@95: cannam@95: X(ops_madd2)(pln->vl / ego->desc->genus->vl, cannam@95: &ego->desc->ops, cannam@95: &pln->super.super.ops); cannam@95: cannam@95: if (ego->bufferedp) cannam@95: pln->super.super.ops.other += 2 * n * pln->vl; cannam@95: cannam@95: pln->super.super.could_prune_now_p = !ego->bufferedp; cannam@95: cannam@95: return &(pln->super.super); cannam@95: } cannam@95: cannam@95: /* constructor */ cannam@95: static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: slv->k = k; cannam@95: slv->desc = desc; cannam@95: slv->bufferedp = bufferedp; cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc) cannam@95: { cannam@95: return mksolver(k, desc, 0); cannam@95: } cannam@95: cannam@95: solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc) cannam@95: { cannam@95: return mksolver(k, desc, 1); cannam@95: }