cannam@95
|
1 /*
|
cannam@95
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
cannam@95
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
cannam@95
|
4 *
|
cannam@95
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@95
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@95
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@95
|
8 * (at your option) any later version.
|
cannam@95
|
9 *
|
cannam@95
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@95
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@95
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@95
|
13 * GNU General Public License for more details.
|
cannam@95
|
14 *
|
cannam@95
|
15 * You should have received a copy of the GNU General Public License
|
cannam@95
|
16 * along with this program; if not, write to the Free Software
|
cannam@95
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@95
|
18 *
|
cannam@95
|
19 */
|
cannam@95
|
20
|
cannam@95
|
21
|
cannam@95
|
22 #include "dft.h"
|
cannam@95
|
23
|
cannam@95
|
24 typedef struct {
|
cannam@95
|
25 solver super;
|
cannam@95
|
26 int maxnbuf_ndx;
|
cannam@95
|
27 } S;
|
cannam@95
|
28
|
cannam@95
|
29 static const INT maxnbufs[] = { 8, 256 };
|
cannam@95
|
30
|
cannam@95
|
31 typedef struct {
|
cannam@95
|
32 plan_dft super;
|
cannam@95
|
33
|
cannam@95
|
34 plan *cld, *cldcpy, *cldrest;
|
cannam@95
|
35 INT n, vl, nbuf, bufdist;
|
cannam@95
|
36 INT ivs_by_nbuf, ovs_by_nbuf;
|
cannam@95
|
37 INT roffset, ioffset;
|
cannam@95
|
38 } P;
|
cannam@95
|
39
|
cannam@95
|
40 /* transform a vector input with the help of bufs */
|
cannam@95
|
41 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
cannam@95
|
42 {
|
cannam@95
|
43 const P *ego = (const P *) ego_;
|
cannam@95
|
44 INT nbuf = ego->nbuf;
|
cannam@95
|
45 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist * 2, BUFFERS);
|
cannam@95
|
46
|
cannam@95
|
47 plan_dft *cld = (plan_dft *) ego->cld;
|
cannam@95
|
48 plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
|
cannam@95
|
49 plan_dft *cldrest;
|
cannam@95
|
50 INT i, vl = ego->vl;
|
cannam@95
|
51 INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
|
cannam@95
|
52 INT roffset = ego->roffset, ioffset = ego->ioffset;
|
cannam@95
|
53
|
cannam@95
|
54 for (i = nbuf; i <= vl; i += nbuf) {
|
cannam@95
|
55 /* transform to bufs: */
|
cannam@95
|
56 cld->apply((plan *) cld, ri, ii, bufs + roffset, bufs + ioffset);
|
cannam@95
|
57 ri += ivs_by_nbuf; ii += ivs_by_nbuf;
|
cannam@95
|
58
|
cannam@95
|
59 /* copy back */
|
cannam@95
|
60 cldcpy->apply((plan *) cldcpy, bufs+roffset, bufs+ioffset, ro, io);
|
cannam@95
|
61 ro += ovs_by_nbuf; io += ovs_by_nbuf;
|
cannam@95
|
62 }
|
cannam@95
|
63
|
cannam@95
|
64 X(ifree)(bufs);
|
cannam@95
|
65
|
cannam@95
|
66 /* Do the remaining transforms, if any: */
|
cannam@95
|
67 cldrest = (plan_dft *) ego->cldrest;
|
cannam@95
|
68 cldrest->apply((plan *) cldrest, ri, ii, ro, io);
|
cannam@95
|
69 }
|
cannam@95
|
70
|
cannam@95
|
71
|
cannam@95
|
72 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@95
|
73 {
|
cannam@95
|
74 P *ego = (P *) ego_;
|
cannam@95
|
75
|
cannam@95
|
76 X(plan_awake)(ego->cld, wakefulness);
|
cannam@95
|
77 X(plan_awake)(ego->cldcpy, wakefulness);
|
cannam@95
|
78 X(plan_awake)(ego->cldrest, wakefulness);
|
cannam@95
|
79 }
|
cannam@95
|
80
|
cannam@95
|
81 static void destroy(plan *ego_)
|
cannam@95
|
82 {
|
cannam@95
|
83 P *ego = (P *) ego_;
|
cannam@95
|
84 X(plan_destroy_internal)(ego->cldrest);
|
cannam@95
|
85 X(plan_destroy_internal)(ego->cldcpy);
|
cannam@95
|
86 X(plan_destroy_internal)(ego->cld);
|
cannam@95
|
87 }
|
cannam@95
|
88
|
cannam@95
|
89 static void print(const plan *ego_, printer *p)
|
cannam@95
|
90 {
|
cannam@95
|
91 const P *ego = (const P *) ego_;
|
cannam@95
|
92 p->print(p, "(dft-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))",
|
cannam@95
|
93 ego->n, ego->nbuf,
|
cannam@95
|
94 ego->vl, ego->bufdist % ego->n,
|
cannam@95
|
95 ego->cld, ego->cldcpy, ego->cldrest);
|
cannam@95
|
96 }
|
cannam@95
|
97
|
cannam@95
|
98 static int applicable0(const S *ego, const problem *p_, const planner *plnr)
|
cannam@95
|
99 {
|
cannam@95
|
100 const problem_dft *p = (const problem_dft *) p_;
|
cannam@95
|
101 const iodim *d = p->sz->dims;
|
cannam@95
|
102
|
cannam@95
|
103 if (1
|
cannam@95
|
104 && p->vecsz->rnk <= 1
|
cannam@95
|
105 && p->sz->rnk == 1
|
cannam@95
|
106 ) {
|
cannam@95
|
107 INT vl, ivs, ovs;
|
cannam@95
|
108 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
|
cannam@95
|
109
|
cannam@95
|
110 if (X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr))
|
cannam@95
|
111 return 0;
|
cannam@95
|
112
|
cannam@95
|
113 /* if this solver is redundant, in the sense that a solver
|
cannam@95
|
114 of lower index generates the same plan, then prune this
|
cannam@95
|
115 solver */
|
cannam@95
|
116 if (X(nbuf_redundant)(d[0].n, vl,
|
cannam@95
|
117 ego->maxnbuf_ndx,
|
cannam@95
|
118 maxnbufs, NELEM(maxnbufs)))
|
cannam@95
|
119 return 0;
|
cannam@95
|
120
|
cannam@95
|
121 /*
|
cannam@95
|
122 In principle, the buffered transforms might be useful
|
cannam@95
|
123 when working out of place. However, in order to
|
cannam@95
|
124 prevent infinite loops in the planner, we require
|
cannam@95
|
125 that the output stride of the buffered transforms be
|
cannam@95
|
126 greater than 2.
|
cannam@95
|
127 */
|
cannam@95
|
128 if (p->ri != p->ro)
|
cannam@95
|
129 return (d[0].os > 2);
|
cannam@95
|
130
|
cannam@95
|
131 /*
|
cannam@95
|
132 * If the problem is in place, the input/output strides must
|
cannam@95
|
133 * be the same or the whole thing must fit in the buffer.
|
cannam@95
|
134 */
|
cannam@95
|
135 if (X(tensor_inplace_strides2)(p->sz, p->vecsz))
|
cannam@95
|
136 return 1;
|
cannam@95
|
137
|
cannam@95
|
138 if (/* fits into buffer: */
|
cannam@95
|
139 ((p->vecsz->rnk == 0)
|
cannam@95
|
140 ||
|
cannam@95
|
141 (X(nbuf)(d[0].n, p->vecsz->dims[0].n,
|
cannam@95
|
142 maxnbufs[ego->maxnbuf_ndx])
|
cannam@95
|
143 == p->vecsz->dims[0].n)))
|
cannam@95
|
144 return 1;
|
cannam@95
|
145 }
|
cannam@95
|
146
|
cannam@95
|
147 return 0;
|
cannam@95
|
148 }
|
cannam@95
|
149
|
cannam@95
|
150 static int applicable(const S *ego, const problem *p_, const planner *plnr)
|
cannam@95
|
151 {
|
cannam@95
|
152 if (NO_BUFFERINGP(plnr)) return 0;
|
cannam@95
|
153 if (!applicable0(ego, p_, plnr)) return 0;
|
cannam@95
|
154
|
cannam@95
|
155 if (NO_UGLYP(plnr)) {
|
cannam@95
|
156 const problem_dft *p = (const problem_dft *) p_;
|
cannam@95
|
157 if (p->ri != p->ro) return 0;
|
cannam@95
|
158 if (X(toobig)(p->sz->dims[0].n)) return 0;
|
cannam@95
|
159 }
|
cannam@95
|
160 return 1;
|
cannam@95
|
161 }
|
cannam@95
|
162
|
cannam@95
|
163 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
cannam@95
|
164 {
|
cannam@95
|
165 P *pln;
|
cannam@95
|
166 const S *ego = (const S *)ego_;
|
cannam@95
|
167 plan *cld = (plan *) 0;
|
cannam@95
|
168 plan *cldcpy = (plan *) 0;
|
cannam@95
|
169 plan *cldrest = (plan *) 0;
|
cannam@95
|
170 const problem_dft *p = (const problem_dft *) p_;
|
cannam@95
|
171 R *bufs = (R *) 0;
|
cannam@95
|
172 INT nbuf = 0, bufdist, n, vl;
|
cannam@95
|
173 INT ivs, ovs, roffset, ioffset;
|
cannam@95
|
174
|
cannam@95
|
175 static const plan_adt padt = {
|
cannam@95
|
176 X(dft_solve), awake, print, destroy
|
cannam@95
|
177 };
|
cannam@95
|
178
|
cannam@95
|
179 if (!applicable(ego, p_, plnr))
|
cannam@95
|
180 goto nada;
|
cannam@95
|
181
|
cannam@95
|
182 n = X(tensor_sz)(p->sz);
|
cannam@95
|
183
|
cannam@95
|
184 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
|
cannam@95
|
185
|
cannam@95
|
186 nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]);
|
cannam@95
|
187 bufdist = X(bufdist)(n, vl);
|
cannam@95
|
188 A(nbuf > 0);
|
cannam@95
|
189
|
cannam@95
|
190 /* attempt to keep real and imaginary part in the same order,
|
cannam@95
|
191 so as to allow optimizations in the the copy plan */
|
cannam@95
|
192 roffset = (p->ri - p->ii > 0) ? (INT)1 : (INT)0;
|
cannam@95
|
193 ioffset = 1 - roffset;
|
cannam@95
|
194
|
cannam@95
|
195 /* initial allocation for the purpose of planning */
|
cannam@95
|
196 bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist * 2, BUFFERS);
|
cannam@95
|
197
|
cannam@95
|
198 /* allow destruction of input if problem is in place */
|
cannam@95
|
199 cld = X(mkplan_f_d)(plnr,
|
cannam@95
|
200 X(mkproblem_dft_d)(
|
cannam@95
|
201 X(mktensor_1d)(n, p->sz->dims[0].is, 2),
|
cannam@95
|
202 X(mktensor_1d)(nbuf, ivs, bufdist * 2),
|
cannam@95
|
203 TAINT(p->ri, ivs * nbuf),
|
cannam@95
|
204 TAINT(p->ii, ivs * nbuf),
|
cannam@95
|
205 bufs + roffset,
|
cannam@95
|
206 bufs + ioffset),
|
cannam@95
|
207 0, 0, (p->ri == p->ro) ? NO_DESTROY_INPUT : 0);
|
cannam@95
|
208 if (!cld)
|
cannam@95
|
209 goto nada;
|
cannam@95
|
210
|
cannam@95
|
211 /* copying back from the buffer is a rank-0 transform: */
|
cannam@95
|
212 cldcpy = X(mkplan_d)(plnr,
|
cannam@95
|
213 X(mkproblem_dft_d)(
|
cannam@95
|
214 X(mktensor_0d)(),
|
cannam@95
|
215 X(mktensor_2d)(nbuf, bufdist * 2, ovs,
|
cannam@95
|
216 n, 2, p->sz->dims[0].os),
|
cannam@95
|
217 bufs + roffset,
|
cannam@95
|
218 bufs + ioffset,
|
cannam@95
|
219 TAINT(p->ro, ovs * nbuf),
|
cannam@95
|
220 TAINT(p->io, ovs * nbuf)));
|
cannam@95
|
221 if (!cldcpy)
|
cannam@95
|
222 goto nada;
|
cannam@95
|
223
|
cannam@95
|
224 /* deallocate buffers, let apply() allocate them for real */
|
cannam@95
|
225 X(ifree)(bufs);
|
cannam@95
|
226 bufs = 0;
|
cannam@95
|
227
|
cannam@95
|
228 /* plan the leftover transforms (cldrest): */
|
cannam@95
|
229 {
|
cannam@95
|
230 INT id = ivs * (nbuf * (vl / nbuf));
|
cannam@95
|
231 INT od = ovs * (nbuf * (vl / nbuf));
|
cannam@95
|
232 cldrest = X(mkplan_d)(plnr,
|
cannam@95
|
233 X(mkproblem_dft_d)(
|
cannam@95
|
234 X(tensor_copy)(p->sz),
|
cannam@95
|
235 X(mktensor_1d)(vl % nbuf, ivs, ovs),
|
cannam@95
|
236 p->ri+id, p->ii+id, p->ro+od, p->io+od));
|
cannam@95
|
237 }
|
cannam@95
|
238 if (!cldrest)
|
cannam@95
|
239 goto nada;
|
cannam@95
|
240
|
cannam@95
|
241 pln = MKPLAN_DFT(P, &padt, apply);
|
cannam@95
|
242 pln->cld = cld;
|
cannam@95
|
243 pln->cldcpy = cldcpy;
|
cannam@95
|
244 pln->cldrest = cldrest;
|
cannam@95
|
245 pln->n = n;
|
cannam@95
|
246 pln->vl = vl;
|
cannam@95
|
247 pln->ivs_by_nbuf = ivs * nbuf;
|
cannam@95
|
248 pln->ovs_by_nbuf = ovs * nbuf;
|
cannam@95
|
249 pln->roffset = roffset;
|
cannam@95
|
250 pln->ioffset = ioffset;
|
cannam@95
|
251
|
cannam@95
|
252 pln->nbuf = nbuf;
|
cannam@95
|
253 pln->bufdist = bufdist;
|
cannam@95
|
254
|
cannam@95
|
255 {
|
cannam@95
|
256 opcnt t;
|
cannam@95
|
257 X(ops_add)(&cld->ops, &cldcpy->ops, &t);
|
cannam@95
|
258 X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops);
|
cannam@95
|
259 }
|
cannam@95
|
260
|
cannam@95
|
261 return &(pln->super.super);
|
cannam@95
|
262
|
cannam@95
|
263 nada:
|
cannam@95
|
264 X(ifree0)(bufs);
|
cannam@95
|
265 X(plan_destroy_internal)(cldrest);
|
cannam@95
|
266 X(plan_destroy_internal)(cldcpy);
|
cannam@95
|
267 X(plan_destroy_internal)(cld);
|
cannam@95
|
268 return (plan *) 0;
|
cannam@95
|
269 }
|
cannam@95
|
270
|
cannam@95
|
271 static solver *mksolver(int maxnbuf_ndx)
|
cannam@95
|
272 {
|
cannam@95
|
273 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
|
cannam@95
|
274 S *slv = MKSOLVER(S, &sadt);
|
cannam@95
|
275 slv->maxnbuf_ndx = maxnbuf_ndx;
|
cannam@95
|
276 return &(slv->super);
|
cannam@95
|
277 }
|
cannam@95
|
278
|
cannam@95
|
279 void X(dft_buffered_register)(planner *p)
|
cannam@95
|
280 {
|
cannam@95
|
281 size_t i;
|
cannam@95
|
282 for (i = 0; i < NELEM(maxnbufs); ++i)
|
cannam@95
|
283 REGISTER_SOLVER(p, mksolver(i));
|
cannam@95
|
284 }
|