cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: cannam@95: #include "dft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: int maxnbuf_ndx; cannam@95: } S; cannam@95: cannam@95: static const INT maxnbufs[] = { 8, 256 }; cannam@95: cannam@95: typedef struct { cannam@95: plan_dft super; cannam@95: cannam@95: plan *cld, *cldcpy, *cldrest; cannam@95: INT n, vl, nbuf, bufdist; cannam@95: INT ivs_by_nbuf, ovs_by_nbuf; cannam@95: INT roffset, ioffset; cannam@95: } P; cannam@95: cannam@95: /* transform a vector input with the help of bufs */ cannam@95: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT nbuf = ego->nbuf; cannam@95: R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist * 2, BUFFERS); cannam@95: cannam@95: plan_dft *cld = (plan_dft *) ego->cld; cannam@95: plan_dft *cldcpy = (plan_dft *) ego->cldcpy; cannam@95: plan_dft *cldrest; cannam@95: INT i, vl = ego->vl; cannam@95: INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf; cannam@95: INT roffset = ego->roffset, ioffset = ego->ioffset; cannam@95: cannam@95: for (i = nbuf; i <= vl; i += nbuf) { cannam@95: /* transform to bufs: */ cannam@95: cld->apply((plan *) cld, ri, ii, bufs + roffset, bufs + ioffset); cannam@95: ri += ivs_by_nbuf; ii += ivs_by_nbuf; cannam@95: cannam@95: /* copy back */ cannam@95: cldcpy->apply((plan *) cldcpy, bufs+roffset, bufs+ioffset, ro, io); cannam@95: ro += ovs_by_nbuf; io += ovs_by_nbuf; cannam@95: } cannam@95: cannam@95: X(ifree)(bufs); cannam@95: cannam@95: /* Do the remaining transforms, if any: */ cannam@95: cldrest = (plan_dft *) ego->cldrest; cannam@95: cldrest->apply((plan *) cldrest, ri, ii, ro, io); cannam@95: } cannam@95: cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: cannam@95: X(plan_awake)(ego->cld, wakefulness); cannam@95: X(plan_awake)(ego->cldcpy, wakefulness); cannam@95: X(plan_awake)(ego->cldrest, wakefulness); cannam@95: } cannam@95: cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_destroy_internal)(ego->cldrest); cannam@95: X(plan_destroy_internal)(ego->cldcpy); cannam@95: X(plan_destroy_internal)(ego->cld); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: p->print(p, "(dft-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))", cannam@95: ego->n, ego->nbuf, cannam@95: ego->vl, ego->bufdist % ego->n, cannam@95: ego->cld, ego->cldcpy, ego->cldrest); cannam@95: } cannam@95: cannam@95: static int applicable0(const S *ego, const problem *p_, const planner *plnr) cannam@95: { cannam@95: const problem_dft *p = (const problem_dft *) p_; cannam@95: const iodim *d = p->sz->dims; cannam@95: cannam@95: if (1 cannam@95: && p->vecsz->rnk <= 1 cannam@95: && p->sz->rnk == 1 cannam@95: ) { cannam@95: INT vl, ivs, ovs; cannam@95: X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); cannam@95: cannam@95: if (X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr)) cannam@95: return 0; cannam@95: cannam@95: /* if this solver is redundant, in the sense that a solver cannam@95: of lower index generates the same plan, then prune this cannam@95: solver */ cannam@95: if (X(nbuf_redundant)(d[0].n, vl, cannam@95: ego->maxnbuf_ndx, cannam@95: maxnbufs, NELEM(maxnbufs))) cannam@95: return 0; cannam@95: cannam@95: /* cannam@95: In principle, the buffered transforms might be useful cannam@95: when working out of place. However, in order to cannam@95: prevent infinite loops in the planner, we require cannam@95: that the output stride of the buffered transforms be cannam@95: greater than 2. cannam@95: */ cannam@95: if (p->ri != p->ro) cannam@95: return (d[0].os > 2); cannam@95: cannam@95: /* cannam@95: * If the problem is in place, the input/output strides must cannam@95: * be the same or the whole thing must fit in the buffer. cannam@95: */ cannam@95: if (X(tensor_inplace_strides2)(p->sz, p->vecsz)) cannam@95: return 1; cannam@95: cannam@95: if (/* fits into buffer: */ cannam@95: ((p->vecsz->rnk == 0) cannam@95: || cannam@95: (X(nbuf)(d[0].n, p->vecsz->dims[0].n, cannam@95: maxnbufs[ego->maxnbuf_ndx]) cannam@95: == p->vecsz->dims[0].n))) cannam@95: return 1; cannam@95: } cannam@95: cannam@95: return 0; cannam@95: } cannam@95: cannam@95: static int applicable(const S *ego, const problem *p_, const planner *plnr) cannam@95: { cannam@95: if (NO_BUFFERINGP(plnr)) return 0; cannam@95: if (!applicable0(ego, p_, plnr)) return 0; cannam@95: cannam@95: if (NO_UGLYP(plnr)) { cannam@95: const problem_dft *p = (const problem_dft *) p_; cannam@95: if (p->ri != p->ro) return 0; cannam@95: if (X(toobig)(p->sz->dims[0].n)) return 0; cannam@95: } cannam@95: return 1; cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: P *pln; cannam@95: const S *ego = (const S *)ego_; cannam@95: plan *cld = (plan *) 0; cannam@95: plan *cldcpy = (plan *) 0; cannam@95: plan *cldrest = (plan *) 0; cannam@95: const problem_dft *p = (const problem_dft *) p_; cannam@95: R *bufs = (R *) 0; cannam@95: INT nbuf = 0, bufdist, n, vl; cannam@95: INT ivs, ovs, roffset, ioffset; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(dft_solve), awake, print, destroy cannam@95: }; cannam@95: cannam@95: if (!applicable(ego, p_, plnr)) cannam@95: goto nada; cannam@95: cannam@95: n = X(tensor_sz)(p->sz); cannam@95: cannam@95: X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); cannam@95: cannam@95: nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]); cannam@95: bufdist = X(bufdist)(n, vl); cannam@95: A(nbuf > 0); cannam@95: cannam@95: /* attempt to keep real and imaginary part in the same order, cannam@95: so as to allow optimizations in the the copy plan */ cannam@95: roffset = (p->ri - p->ii > 0) ? (INT)1 : (INT)0; cannam@95: ioffset = 1 - roffset; cannam@95: cannam@95: /* initial allocation for the purpose of planning */ cannam@95: bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist * 2, BUFFERS); cannam@95: cannam@95: /* allow destruction of input if problem is in place */ cannam@95: cld = X(mkplan_f_d)(plnr, cannam@95: X(mkproblem_dft_d)( cannam@95: X(mktensor_1d)(n, p->sz->dims[0].is, 2), cannam@95: X(mktensor_1d)(nbuf, ivs, bufdist * 2), cannam@95: TAINT(p->ri, ivs * nbuf), cannam@95: TAINT(p->ii, ivs * nbuf), cannam@95: bufs + roffset, cannam@95: bufs + ioffset), cannam@95: 0, 0, (p->ri == p->ro) ? NO_DESTROY_INPUT : 0); cannam@95: if (!cld) cannam@95: goto nada; cannam@95: cannam@95: /* copying back from the buffer is a rank-0 transform: */ cannam@95: cldcpy = X(mkplan_d)(plnr, cannam@95: X(mkproblem_dft_d)( cannam@95: X(mktensor_0d)(), cannam@95: X(mktensor_2d)(nbuf, bufdist * 2, ovs, cannam@95: n, 2, p->sz->dims[0].os), cannam@95: bufs + roffset, cannam@95: bufs + ioffset, cannam@95: TAINT(p->ro, ovs * nbuf), cannam@95: TAINT(p->io, ovs * nbuf))); cannam@95: if (!cldcpy) cannam@95: goto nada; cannam@95: cannam@95: /* deallocate buffers, let apply() allocate them for real */ cannam@95: X(ifree)(bufs); cannam@95: bufs = 0; cannam@95: cannam@95: /* plan the leftover transforms (cldrest): */ cannam@95: { cannam@95: INT id = ivs * (nbuf * (vl / nbuf)); cannam@95: INT od = ovs * (nbuf * (vl / nbuf)); cannam@95: cldrest = X(mkplan_d)(plnr, cannam@95: X(mkproblem_dft_d)( cannam@95: X(tensor_copy)(p->sz), cannam@95: X(mktensor_1d)(vl % nbuf, ivs, ovs), cannam@95: p->ri+id, p->ii+id, p->ro+od, p->io+od)); cannam@95: } cannam@95: if (!cldrest) cannam@95: goto nada; cannam@95: cannam@95: pln = MKPLAN_DFT(P, &padt, apply); cannam@95: pln->cld = cld; cannam@95: pln->cldcpy = cldcpy; cannam@95: pln->cldrest = cldrest; cannam@95: pln->n = n; cannam@95: pln->vl = vl; cannam@95: pln->ivs_by_nbuf = ivs * nbuf; cannam@95: pln->ovs_by_nbuf = ovs * nbuf; cannam@95: pln->roffset = roffset; cannam@95: pln->ioffset = ioffset; cannam@95: cannam@95: pln->nbuf = nbuf; cannam@95: pln->bufdist = bufdist; cannam@95: cannam@95: { cannam@95: opcnt t; cannam@95: X(ops_add)(&cld->ops, &cldcpy->ops, &t); cannam@95: X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops); cannam@95: } cannam@95: cannam@95: return &(pln->super.super); cannam@95: cannam@95: nada: cannam@95: X(ifree0)(bufs); cannam@95: X(plan_destroy_internal)(cldrest); cannam@95: X(plan_destroy_internal)(cldcpy); cannam@95: X(plan_destroy_internal)(cld); cannam@95: return (plan *) 0; cannam@95: } cannam@95: cannam@95: static solver *mksolver(int maxnbuf_ndx) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: slv->maxnbuf_ndx = maxnbuf_ndx; cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void X(dft_buffered_register)(planner *p) cannam@95: { cannam@95: size_t i; cannam@95: for (i = 0; i < NELEM(maxnbufs); ++i) cannam@95: REGISTER_SOLVER(p, mksolver(i)); cannam@95: }