annotate src/libmad-0.15.1b/layer3.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents c7265573341e
children
rev   line source
Chris@0 1 /*
Chris@0 2 * libmad - MPEG audio decoder library
Chris@0 3 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
Chris@0 4 *
Chris@0 5 * This program is free software; you can redistribute it and/or modify
Chris@0 6 * it under the terms of the GNU General Public License as published by
Chris@0 7 * the Free Software Foundation; either version 2 of the License, or
Chris@0 8 * (at your option) any later version.
Chris@0 9 *
Chris@0 10 * This program is distributed in the hope that it will be useful,
Chris@0 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@0 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@0 13 * GNU General Public License for more details.
Chris@0 14 *
Chris@0 15 * You should have received a copy of the GNU General Public License
Chris@0 16 * along with this program; if not, write to the Free Software
Chris@0 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Chris@0 18 *
Chris@0 19 * $Id: layer3.c,v 1.43 2004/01/23 09:41:32 rob Exp $
Chris@0 20 */
Chris@0 21
Chris@0 22 # ifdef HAVE_CONFIG_H
Chris@0 23 # include "config.h"
Chris@0 24 # endif
Chris@0 25
Chris@0 26 # include "global.h"
Chris@0 27
Chris@0 28 # include <stdlib.h>
Chris@0 29 # include <string.h>
Chris@0 30
Chris@0 31 # ifdef HAVE_ASSERT_H
Chris@0 32 # include <assert.h>
Chris@0 33 # endif
Chris@0 34
Chris@0 35 # ifdef HAVE_LIMITS_H
Chris@0 36 # include <limits.h>
Chris@0 37 # else
Chris@0 38 # define CHAR_BIT 8
Chris@0 39 # endif
Chris@0 40
Chris@0 41 # include "fixed.h"
Chris@0 42 # include "bit.h"
Chris@0 43 # include "stream.h"
Chris@0 44 # include "frame.h"
Chris@0 45 # include "huffman.h"
Chris@0 46 # include "layer3.h"
Chris@0 47
Chris@0 48 /* --- Layer III ----------------------------------------------------------- */
Chris@0 49
Chris@0 50 enum {
Chris@0 51 count1table_select = 0x01,
Chris@0 52 scalefac_scale = 0x02,
Chris@0 53 preflag = 0x04,
Chris@0 54 mixed_block_flag = 0x08
Chris@0 55 };
Chris@0 56
Chris@0 57 enum {
Chris@0 58 I_STEREO = 0x1,
Chris@0 59 MS_STEREO = 0x2
Chris@0 60 };
Chris@0 61
Chris@0 62 struct sideinfo {
Chris@0 63 unsigned int main_data_begin;
Chris@0 64 unsigned int private_bits;
Chris@0 65
Chris@0 66 unsigned char scfsi[2];
Chris@0 67
Chris@0 68 struct granule {
Chris@0 69 struct channel {
Chris@0 70 /* from side info */
Chris@0 71 unsigned short part2_3_length;
Chris@0 72 unsigned short big_values;
Chris@0 73 unsigned short global_gain;
Chris@0 74 unsigned short scalefac_compress;
Chris@0 75
Chris@0 76 unsigned char flags;
Chris@0 77 unsigned char block_type;
Chris@0 78 unsigned char table_select[3];
Chris@0 79 unsigned char subblock_gain[3];
Chris@0 80 unsigned char region0_count;
Chris@0 81 unsigned char region1_count;
Chris@0 82
Chris@0 83 /* from main_data */
Chris@0 84 unsigned char scalefac[39]; /* scalefac_l and/or scalefac_s */
Chris@0 85 } ch[2];
Chris@0 86 } gr[2];
Chris@0 87 };
Chris@0 88
Chris@0 89 /*
Chris@0 90 * scalefactor bit lengths
Chris@0 91 * derived from section 2.4.2.7 of ISO/IEC 11172-3
Chris@0 92 */
Chris@0 93 static
Chris@0 94 struct {
Chris@0 95 unsigned char slen1;
Chris@0 96 unsigned char slen2;
Chris@0 97 } const sflen_table[16] = {
Chris@0 98 { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 },
Chris@0 99 { 3, 0 }, { 1, 1 }, { 1, 2 }, { 1, 3 },
Chris@0 100 { 2, 1 }, { 2, 2 }, { 2, 3 }, { 3, 1 },
Chris@0 101 { 3, 2 }, { 3, 3 }, { 4, 2 }, { 4, 3 }
Chris@0 102 };
Chris@0 103
Chris@0 104 /*
Chris@0 105 * number of LSF scalefactor band values
Chris@0 106 * derived from section 2.4.3.2 of ISO/IEC 13818-3
Chris@0 107 */
Chris@0 108 static
Chris@0 109 unsigned char const nsfb_table[6][3][4] = {
Chris@0 110 { { 6, 5, 5, 5 },
Chris@0 111 { 9, 9, 9, 9 },
Chris@0 112 { 6, 9, 9, 9 } },
Chris@0 113
Chris@0 114 { { 6, 5, 7, 3 },
Chris@0 115 { 9, 9, 12, 6 },
Chris@0 116 { 6, 9, 12, 6 } },
Chris@0 117
Chris@0 118 { { 11, 10, 0, 0 },
Chris@0 119 { 18, 18, 0, 0 },
Chris@0 120 { 15, 18, 0, 0 } },
Chris@0 121
Chris@0 122 { { 7, 7, 7, 0 },
Chris@0 123 { 12, 12, 12, 0 },
Chris@0 124 { 6, 15, 12, 0 } },
Chris@0 125
Chris@0 126 { { 6, 6, 6, 3 },
Chris@0 127 { 12, 9, 9, 6 },
Chris@0 128 { 6, 12, 9, 6 } },
Chris@0 129
Chris@0 130 { { 8, 8, 5, 0 },
Chris@0 131 { 15, 12, 9, 0 },
Chris@0 132 { 6, 18, 9, 0 } }
Chris@0 133 };
Chris@0 134
Chris@0 135 /*
Chris@0 136 * MPEG-1 scalefactor band widths
Chris@0 137 * derived from Table B.8 of ISO/IEC 11172-3
Chris@0 138 */
Chris@0 139 static
Chris@0 140 unsigned char const sfb_48000_long[] = {
Chris@0 141 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, 10,
Chris@0 142 12, 16, 18, 22, 28, 34, 40, 46, 54, 54, 192
Chris@0 143 };
Chris@0 144
Chris@0 145 static
Chris@0 146 unsigned char const sfb_44100_long[] = {
Chris@0 147 4, 4, 4, 4, 4, 4, 6, 6, 8, 8, 10,
Chris@0 148 12, 16, 20, 24, 28, 34, 42, 50, 54, 76, 158
Chris@0 149 };
Chris@0 150
Chris@0 151 static
Chris@0 152 unsigned char const sfb_32000_long[] = {
Chris@0 153 4, 4, 4, 4, 4, 4, 6, 6, 8, 10, 12,
Chris@0 154 16, 20, 24, 30, 38, 46, 56, 68, 84, 102, 26
Chris@0 155 };
Chris@0 156
Chris@0 157 static
Chris@0 158 unsigned char const sfb_48000_short[] = {
Chris@0 159 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6,
Chris@0 160 6, 6, 6, 6, 6, 10, 10, 10, 12, 12, 12, 14, 14,
Chris@0 161 14, 16, 16, 16, 20, 20, 20, 26, 26, 26, 66, 66, 66
Chris@0 162 };
Chris@0 163
Chris@0 164 static
Chris@0 165 unsigned char const sfb_44100_short[] = {
Chris@0 166 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6,
Chris@0 167 6, 6, 8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14,
Chris@0 168 14, 18, 18, 18, 22, 22, 22, 30, 30, 30, 56, 56, 56
Chris@0 169 };
Chris@0 170
Chris@0 171 static
Chris@0 172 unsigned char const sfb_32000_short[] = {
Chris@0 173 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6,
Chris@0 174 6, 6, 8, 8, 8, 12, 12, 12, 16, 16, 16, 20, 20,
Chris@0 175 20, 26, 26, 26, 34, 34, 34, 42, 42, 42, 12, 12, 12
Chris@0 176 };
Chris@0 177
Chris@0 178 static
Chris@0 179 unsigned char const sfb_48000_mixed[] = {
Chris@0 180 /* long */ 4, 4, 4, 4, 4, 4, 6, 6,
Chris@0 181 /* short */ 4, 4, 4, 6, 6, 6, 6, 6, 6, 10,
Chris@0 182 10, 10, 12, 12, 12, 14, 14, 14, 16, 16,
Chris@0 183 16, 20, 20, 20, 26, 26, 26, 66, 66, 66
Chris@0 184 };
Chris@0 185
Chris@0 186 static
Chris@0 187 unsigned char const sfb_44100_mixed[] = {
Chris@0 188 /* long */ 4, 4, 4, 4, 4, 4, 6, 6,
Chris@0 189 /* short */ 4, 4, 4, 6, 6, 6, 8, 8, 8, 10,
Chris@0 190 10, 10, 12, 12, 12, 14, 14, 14, 18, 18,
Chris@0 191 18, 22, 22, 22, 30, 30, 30, 56, 56, 56
Chris@0 192 };
Chris@0 193
Chris@0 194 static
Chris@0 195 unsigned char const sfb_32000_mixed[] = {
Chris@0 196 /* long */ 4, 4, 4, 4, 4, 4, 6, 6,
Chris@0 197 /* short */ 4, 4, 4, 6, 6, 6, 8, 8, 8, 12,
Chris@0 198 12, 12, 16, 16, 16, 20, 20, 20, 26, 26,
Chris@0 199 26, 34, 34, 34, 42, 42, 42, 12, 12, 12
Chris@0 200 };
Chris@0 201
Chris@0 202 /*
Chris@0 203 * MPEG-2 scalefactor band widths
Chris@0 204 * derived from Table B.2 of ISO/IEC 13818-3
Chris@0 205 */
Chris@0 206 static
Chris@0 207 unsigned char const sfb_24000_long[] = {
Chris@0 208 6, 6, 6, 6, 6, 6, 8, 10, 12, 14, 16,
Chris@0 209 18, 22, 26, 32, 38, 46, 54, 62, 70, 76, 36
Chris@0 210 };
Chris@0 211
Chris@0 212 static
Chris@0 213 unsigned char const sfb_22050_long[] = {
Chris@0 214 6, 6, 6, 6, 6, 6, 8, 10, 12, 14, 16,
Chris@0 215 20, 24, 28, 32, 38, 46, 52, 60, 68, 58, 54
Chris@0 216 };
Chris@0 217
Chris@0 218 # define sfb_16000_long sfb_22050_long
Chris@0 219
Chris@0 220 static
Chris@0 221 unsigned char const sfb_24000_short[] = {
Chris@0 222 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8,
Chris@0 223 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 18, 18,
Chris@0 224 18, 24, 24, 24, 32, 32, 32, 44, 44, 44, 12, 12, 12
Chris@0 225 };
Chris@0 226
Chris@0 227 static
Chris@0 228 unsigned char const sfb_22050_short[] = {
Chris@0 229 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6,
Chris@0 230 6, 6, 8, 8, 8, 10, 10, 10, 14, 14, 14, 18, 18,
Chris@0 231 18, 26, 26, 26, 32, 32, 32, 42, 42, 42, 18, 18, 18
Chris@0 232 };
Chris@0 233
Chris@0 234 static
Chris@0 235 unsigned char const sfb_16000_short[] = {
Chris@0 236 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8,
Chris@0 237 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 18, 18,
Chris@0 238 18, 24, 24, 24, 30, 30, 30, 40, 40, 40, 18, 18, 18
Chris@0 239 };
Chris@0 240
Chris@0 241 static
Chris@0 242 unsigned char const sfb_24000_mixed[] = {
Chris@0 243 /* long */ 6, 6, 6, 6, 6, 6,
Chris@0 244 /* short */ 6, 6, 6, 8, 8, 8, 10, 10, 10, 12,
Chris@0 245 12, 12, 14, 14, 14, 18, 18, 18, 24, 24,
Chris@0 246 24, 32, 32, 32, 44, 44, 44, 12, 12, 12
Chris@0 247 };
Chris@0 248
Chris@0 249 static
Chris@0 250 unsigned char const sfb_22050_mixed[] = {
Chris@0 251 /* long */ 6, 6, 6, 6, 6, 6,
Chris@0 252 /* short */ 6, 6, 6, 6, 6, 6, 8, 8, 8, 10,
Chris@0 253 10, 10, 14, 14, 14, 18, 18, 18, 26, 26,
Chris@0 254 26, 32, 32, 32, 42, 42, 42, 18, 18, 18
Chris@0 255 };
Chris@0 256
Chris@0 257 static
Chris@0 258 unsigned char const sfb_16000_mixed[] = {
Chris@0 259 /* long */ 6, 6, 6, 6, 6, 6,
Chris@0 260 /* short */ 6, 6, 6, 8, 8, 8, 10, 10, 10, 12,
Chris@0 261 12, 12, 14, 14, 14, 18, 18, 18, 24, 24,
Chris@0 262 24, 30, 30, 30, 40, 40, 40, 18, 18, 18
Chris@0 263 };
Chris@0 264
Chris@0 265 /*
Chris@0 266 * MPEG 2.5 scalefactor band widths
Chris@0 267 * derived from public sources
Chris@0 268 */
Chris@0 269 # define sfb_12000_long sfb_16000_long
Chris@0 270 # define sfb_11025_long sfb_12000_long
Chris@0 271
Chris@0 272 static
Chris@0 273 unsigned char const sfb_8000_long[] = {
Chris@0 274 12, 12, 12, 12, 12, 12, 16, 20, 24, 28, 32,
Chris@0 275 40, 48, 56, 64, 76, 90, 2, 2, 2, 2, 2
Chris@0 276 };
Chris@0 277
Chris@0 278 # define sfb_12000_short sfb_16000_short
Chris@0 279 # define sfb_11025_short sfb_12000_short
Chris@0 280
Chris@0 281 static
Chris@0 282 unsigned char const sfb_8000_short[] = {
Chris@0 283 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 16,
Chris@0 284 16, 16, 20, 20, 20, 24, 24, 24, 28, 28, 28, 36, 36,
Chris@0 285 36, 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 26, 26
Chris@0 286 };
Chris@0 287
Chris@0 288 # define sfb_12000_mixed sfb_16000_mixed
Chris@0 289 # define sfb_11025_mixed sfb_12000_mixed
Chris@0 290
Chris@0 291 /* the 8000 Hz short block scalefactor bands do not break after
Chris@0 292 the first 36 frequency lines, so this is probably wrong */
Chris@0 293 static
Chris@0 294 unsigned char const sfb_8000_mixed[] = {
Chris@0 295 /* long */ 12, 12, 12,
Chris@0 296 /* short */ 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16,
Chris@0 297 20, 20, 20, 24, 24, 24, 28, 28, 28, 36, 36, 36,
Chris@0 298 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 26, 26
Chris@0 299 };
Chris@0 300
Chris@0 301 static
Chris@0 302 struct {
Chris@0 303 unsigned char const *l;
Chris@0 304 unsigned char const *s;
Chris@0 305 unsigned char const *m;
Chris@0 306 } const sfbwidth_table[9] = {
Chris@0 307 { sfb_48000_long, sfb_48000_short, sfb_48000_mixed },
Chris@0 308 { sfb_44100_long, sfb_44100_short, sfb_44100_mixed },
Chris@0 309 { sfb_32000_long, sfb_32000_short, sfb_32000_mixed },
Chris@0 310 { sfb_24000_long, sfb_24000_short, sfb_24000_mixed },
Chris@0 311 { sfb_22050_long, sfb_22050_short, sfb_22050_mixed },
Chris@0 312 { sfb_16000_long, sfb_16000_short, sfb_16000_mixed },
Chris@0 313 { sfb_12000_long, sfb_12000_short, sfb_12000_mixed },
Chris@0 314 { sfb_11025_long, sfb_11025_short, sfb_11025_mixed },
Chris@0 315 { sfb_8000_long, sfb_8000_short, sfb_8000_mixed }
Chris@0 316 };
Chris@0 317
Chris@0 318 /*
Chris@0 319 * scalefactor band preemphasis (used only when preflag is set)
Chris@0 320 * derived from Table B.6 of ISO/IEC 11172-3
Chris@0 321 */
Chris@0 322 static
Chris@0 323 unsigned char const pretab[22] = {
Chris@0 324 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 0
Chris@0 325 };
Chris@0 326
Chris@0 327 /*
Chris@0 328 * table for requantization
Chris@0 329 *
Chris@0 330 * rq_table[x].mantissa * 2^(rq_table[x].exponent) = x^(4/3)
Chris@0 331 */
Chris@0 332 static
Chris@0 333 struct fixedfloat {
Chris@0 334 unsigned long mantissa : 27;
Chris@0 335 unsigned short exponent : 5;
Chris@0 336 } const rq_table[8207] = {
Chris@0 337 # include "rq_table.dat"
Chris@0 338 };
Chris@0 339
Chris@0 340 /*
Chris@0 341 * fractional powers of two
Chris@0 342 * used for requantization and joint stereo decoding
Chris@0 343 *
Chris@0 344 * root_table[3 + x] = 2^(x/4)
Chris@0 345 */
Chris@0 346 static
Chris@0 347 mad_fixed_t const root_table[7] = {
Chris@0 348 MAD_F(0x09837f05) /* 2^(-3/4) == 0.59460355750136 */,
Chris@0 349 MAD_F(0x0b504f33) /* 2^(-2/4) == 0.70710678118655 */,
Chris@0 350 MAD_F(0x0d744fcd) /* 2^(-1/4) == 0.84089641525371 */,
Chris@0 351 MAD_F(0x10000000) /* 2^( 0/4) == 1.00000000000000 */,
Chris@0 352 MAD_F(0x1306fe0a) /* 2^(+1/4) == 1.18920711500272 */,
Chris@0 353 MAD_F(0x16a09e66) /* 2^(+2/4) == 1.41421356237310 */,
Chris@0 354 MAD_F(0x1ae89f99) /* 2^(+3/4) == 1.68179283050743 */
Chris@0 355 };
Chris@0 356
Chris@0 357 /*
Chris@0 358 * coefficients for aliasing reduction
Chris@0 359 * derived from Table B.9 of ISO/IEC 11172-3
Chris@0 360 *
Chris@0 361 * c[] = { -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 }
Chris@0 362 * cs[i] = 1 / sqrt(1 + c[i]^2)
Chris@0 363 * ca[i] = c[i] / sqrt(1 + c[i]^2)
Chris@0 364 */
Chris@0 365 static
Chris@0 366 mad_fixed_t const cs[8] = {
Chris@0 367 +MAD_F(0x0db84a81) /* +0.857492926 */, +MAD_F(0x0e1b9d7f) /* +0.881741997 */,
Chris@0 368 +MAD_F(0x0f31adcf) /* +0.949628649 */, +MAD_F(0x0fbba815) /* +0.983314592 */,
Chris@0 369 +MAD_F(0x0feda417) /* +0.995517816 */, +MAD_F(0x0ffc8fc8) /* +0.999160558 */,
Chris@0 370 +MAD_F(0x0fff964c) /* +0.999899195 */, +MAD_F(0x0ffff8d3) /* +0.999993155 */
Chris@0 371 };
Chris@0 372
Chris@0 373 static
Chris@0 374 mad_fixed_t const ca[8] = {
Chris@0 375 -MAD_F(0x083b5fe7) /* -0.514495755 */, -MAD_F(0x078c36d2) /* -0.471731969 */,
Chris@0 376 -MAD_F(0x05039814) /* -0.313377454 */, -MAD_F(0x02e91dd1) /* -0.181913200 */,
Chris@0 377 -MAD_F(0x0183603a) /* -0.094574193 */, -MAD_F(0x00a7cb87) /* -0.040965583 */,
Chris@0 378 -MAD_F(0x003a2847) /* -0.014198569 */, -MAD_F(0x000f27b4) /* -0.003699975 */
Chris@0 379 };
Chris@0 380
Chris@0 381 /*
Chris@0 382 * IMDCT coefficients for short blocks
Chris@0 383 * derived from section 2.4.3.4.10.2 of ISO/IEC 11172-3
Chris@0 384 *
Chris@0 385 * imdct_s[i/even][k] = cos((PI / 24) * (2 * (i / 2) + 7) * (2 * k + 1))
Chris@0 386 * imdct_s[i /odd][k] = cos((PI / 24) * (2 * (6 + (i-1)/2) + 7) * (2 * k + 1))
Chris@0 387 */
Chris@0 388 static
Chris@0 389 mad_fixed_t const imdct_s[6][6] = {
Chris@0 390 # include "imdct_s.dat"
Chris@0 391 };
Chris@0 392
Chris@0 393 # if !defined(ASO_IMDCT)
Chris@0 394 /*
Chris@0 395 * windowing coefficients for long blocks
Chris@0 396 * derived from section 2.4.3.4.10.3 of ISO/IEC 11172-3
Chris@0 397 *
Chris@0 398 * window_l[i] = sin((PI / 36) * (i + 1/2))
Chris@0 399 */
Chris@0 400 static
Chris@0 401 mad_fixed_t const window_l[36] = {
Chris@0 402 MAD_F(0x00b2aa3e) /* 0.043619387 */, MAD_F(0x0216a2a2) /* 0.130526192 */,
Chris@0 403 MAD_F(0x03768962) /* 0.216439614 */, MAD_F(0x04cfb0e2) /* 0.300705800 */,
Chris@0 404 MAD_F(0x061f78aa) /* 0.382683432 */, MAD_F(0x07635284) /* 0.461748613 */,
Chris@0 405 MAD_F(0x0898c779) /* 0.537299608 */, MAD_F(0x09bd7ca0) /* 0.608761429 */,
Chris@0 406 MAD_F(0x0acf37ad) /* 0.675590208 */, MAD_F(0x0bcbe352) /* 0.737277337 */,
Chris@0 407 MAD_F(0x0cb19346) /* 0.793353340 */, MAD_F(0x0d7e8807) /* 0.843391446 */,
Chris@0 408
Chris@0 409 MAD_F(0x0e313245) /* 0.887010833 */, MAD_F(0x0ec835e8) /* 0.923879533 */,
Chris@0 410 MAD_F(0x0f426cb5) /* 0.953716951 */, MAD_F(0x0f9ee890) /* 0.976296007 */,
Chris@0 411 MAD_F(0x0fdcf549) /* 0.991444861 */, MAD_F(0x0ffc19fd) /* 0.999048222 */,
Chris@0 412 MAD_F(0x0ffc19fd) /* 0.999048222 */, MAD_F(0x0fdcf549) /* 0.991444861 */,
Chris@0 413 MAD_F(0x0f9ee890) /* 0.976296007 */, MAD_F(0x0f426cb5) /* 0.953716951 */,
Chris@0 414 MAD_F(0x0ec835e8) /* 0.923879533 */, MAD_F(0x0e313245) /* 0.887010833 */,
Chris@0 415
Chris@0 416 MAD_F(0x0d7e8807) /* 0.843391446 */, MAD_F(0x0cb19346) /* 0.793353340 */,
Chris@0 417 MAD_F(0x0bcbe352) /* 0.737277337 */, MAD_F(0x0acf37ad) /* 0.675590208 */,
Chris@0 418 MAD_F(0x09bd7ca0) /* 0.608761429 */, MAD_F(0x0898c779) /* 0.537299608 */,
Chris@0 419 MAD_F(0x07635284) /* 0.461748613 */, MAD_F(0x061f78aa) /* 0.382683432 */,
Chris@0 420 MAD_F(0x04cfb0e2) /* 0.300705800 */, MAD_F(0x03768962) /* 0.216439614 */,
Chris@0 421 MAD_F(0x0216a2a2) /* 0.130526192 */, MAD_F(0x00b2aa3e) /* 0.043619387 */,
Chris@0 422 };
Chris@0 423 # endif /* ASO_IMDCT */
Chris@0 424
Chris@0 425 /*
Chris@0 426 * windowing coefficients for short blocks
Chris@0 427 * derived from section 2.4.3.4.10.3 of ISO/IEC 11172-3
Chris@0 428 *
Chris@0 429 * window_s[i] = sin((PI / 12) * (i + 1/2))
Chris@0 430 */
Chris@0 431 static
Chris@0 432 mad_fixed_t const window_s[12] = {
Chris@0 433 MAD_F(0x0216a2a2) /* 0.130526192 */, MAD_F(0x061f78aa) /* 0.382683432 */,
Chris@0 434 MAD_F(0x09bd7ca0) /* 0.608761429 */, MAD_F(0x0cb19346) /* 0.793353340 */,
Chris@0 435 MAD_F(0x0ec835e8) /* 0.923879533 */, MAD_F(0x0fdcf549) /* 0.991444861 */,
Chris@0 436 MAD_F(0x0fdcf549) /* 0.991444861 */, MAD_F(0x0ec835e8) /* 0.923879533 */,
Chris@0 437 MAD_F(0x0cb19346) /* 0.793353340 */, MAD_F(0x09bd7ca0) /* 0.608761429 */,
Chris@0 438 MAD_F(0x061f78aa) /* 0.382683432 */, MAD_F(0x0216a2a2) /* 0.130526192 */,
Chris@0 439 };
Chris@0 440
Chris@0 441 /*
Chris@0 442 * coefficients for intensity stereo processing
Chris@0 443 * derived from section 2.4.3.4.9.3 of ISO/IEC 11172-3
Chris@0 444 *
Chris@0 445 * is_ratio[i] = tan(i * (PI / 12))
Chris@0 446 * is_table[i] = is_ratio[i] / (1 + is_ratio[i])
Chris@0 447 */
Chris@0 448 static
Chris@0 449 mad_fixed_t const is_table[7] = {
Chris@0 450 MAD_F(0x00000000) /* 0.000000000 */,
Chris@0 451 MAD_F(0x0361962f) /* 0.211324865 */,
Chris@0 452 MAD_F(0x05db3d74) /* 0.366025404 */,
Chris@0 453 MAD_F(0x08000000) /* 0.500000000 */,
Chris@0 454 MAD_F(0x0a24c28c) /* 0.633974596 */,
Chris@0 455 MAD_F(0x0c9e69d1) /* 0.788675135 */,
Chris@0 456 MAD_F(0x10000000) /* 1.000000000 */
Chris@0 457 };
Chris@0 458
Chris@0 459 /*
Chris@0 460 * coefficients for LSF intensity stereo processing
Chris@0 461 * derived from section 2.4.3.2 of ISO/IEC 13818-3
Chris@0 462 *
Chris@0 463 * is_lsf_table[0][i] = (1 / sqrt(sqrt(2)))^(i + 1)
Chris@0 464 * is_lsf_table[1][i] = (1 / sqrt(2)) ^(i + 1)
Chris@0 465 */
Chris@0 466 static
Chris@0 467 mad_fixed_t const is_lsf_table[2][15] = {
Chris@0 468 {
Chris@0 469 MAD_F(0x0d744fcd) /* 0.840896415 */,
Chris@0 470 MAD_F(0x0b504f33) /* 0.707106781 */,
Chris@0 471 MAD_F(0x09837f05) /* 0.594603558 */,
Chris@0 472 MAD_F(0x08000000) /* 0.500000000 */,
Chris@0 473 MAD_F(0x06ba27e6) /* 0.420448208 */,
Chris@0 474 MAD_F(0x05a8279a) /* 0.353553391 */,
Chris@0 475 MAD_F(0x04c1bf83) /* 0.297301779 */,
Chris@0 476 MAD_F(0x04000000) /* 0.250000000 */,
Chris@0 477 MAD_F(0x035d13f3) /* 0.210224104 */,
Chris@0 478 MAD_F(0x02d413cd) /* 0.176776695 */,
Chris@0 479 MAD_F(0x0260dfc1) /* 0.148650889 */,
Chris@0 480 MAD_F(0x02000000) /* 0.125000000 */,
Chris@0 481 MAD_F(0x01ae89fa) /* 0.105112052 */,
Chris@0 482 MAD_F(0x016a09e6) /* 0.088388348 */,
Chris@0 483 MAD_F(0x01306fe1) /* 0.074325445 */
Chris@0 484 }, {
Chris@0 485 MAD_F(0x0b504f33) /* 0.707106781 */,
Chris@0 486 MAD_F(0x08000000) /* 0.500000000 */,
Chris@0 487 MAD_F(0x05a8279a) /* 0.353553391 */,
Chris@0 488 MAD_F(0x04000000) /* 0.250000000 */,
Chris@0 489 MAD_F(0x02d413cd) /* 0.176776695 */,
Chris@0 490 MAD_F(0x02000000) /* 0.125000000 */,
Chris@0 491 MAD_F(0x016a09e6) /* 0.088388348 */,
Chris@0 492 MAD_F(0x01000000) /* 0.062500000 */,
Chris@0 493 MAD_F(0x00b504f3) /* 0.044194174 */,
Chris@0 494 MAD_F(0x00800000) /* 0.031250000 */,
Chris@0 495 MAD_F(0x005a827a) /* 0.022097087 */,
Chris@0 496 MAD_F(0x00400000) /* 0.015625000 */,
Chris@0 497 MAD_F(0x002d413d) /* 0.011048543 */,
Chris@0 498 MAD_F(0x00200000) /* 0.007812500 */,
Chris@0 499 MAD_F(0x0016a09e) /* 0.005524272 */
Chris@0 500 }
Chris@0 501 };
Chris@0 502
Chris@0 503 /*
Chris@0 504 * NAME: III_sideinfo()
Chris@0 505 * DESCRIPTION: decode frame side information from a bitstream
Chris@0 506 */
Chris@0 507 static
Chris@0 508 enum mad_error III_sideinfo(struct mad_bitptr *ptr, unsigned int nch,
Chris@0 509 int lsf, struct sideinfo *si,
Chris@0 510 unsigned int *data_bitlen,
Chris@0 511 unsigned int *priv_bitlen)
Chris@0 512 {
Chris@0 513 unsigned int ngr, gr, ch, i;
Chris@0 514 enum mad_error result = MAD_ERROR_NONE;
Chris@0 515
Chris@0 516 *data_bitlen = 0;
Chris@0 517 *priv_bitlen = lsf ? ((nch == 1) ? 1 : 2) : ((nch == 1) ? 5 : 3);
Chris@0 518
Chris@0 519 si->main_data_begin = mad_bit_read(ptr, lsf ? 8 : 9);
Chris@0 520 si->private_bits = mad_bit_read(ptr, *priv_bitlen);
Chris@0 521
Chris@0 522 ngr = 1;
Chris@0 523 if (!lsf) {
Chris@0 524 ngr = 2;
Chris@0 525
Chris@0 526 for (ch = 0; ch < nch; ++ch)
Chris@0 527 si->scfsi[ch] = mad_bit_read(ptr, 4);
Chris@0 528 }
Chris@0 529
Chris@0 530 for (gr = 0; gr < ngr; ++gr) {
Chris@0 531 struct granule *granule = &si->gr[gr];
Chris@0 532
Chris@0 533 for (ch = 0; ch < nch; ++ch) {
Chris@0 534 struct channel *channel = &granule->ch[ch];
Chris@0 535
Chris@0 536 channel->part2_3_length = mad_bit_read(ptr, 12);
Chris@0 537 channel->big_values = mad_bit_read(ptr, 9);
Chris@0 538 channel->global_gain = mad_bit_read(ptr, 8);
Chris@0 539 channel->scalefac_compress = mad_bit_read(ptr, lsf ? 9 : 4);
Chris@0 540
Chris@0 541 *data_bitlen += channel->part2_3_length;
Chris@0 542
Chris@0 543 if (channel->big_values > 288 && result == 0)
Chris@0 544 result = MAD_ERROR_BADBIGVALUES;
Chris@0 545
Chris@0 546 channel->flags = 0;
Chris@0 547
Chris@0 548 /* window_switching_flag */
Chris@0 549 if (mad_bit_read(ptr, 1)) {
Chris@0 550 channel->block_type = mad_bit_read(ptr, 2);
Chris@0 551
Chris@0 552 if (channel->block_type == 0 && result == 0)
Chris@0 553 result = MAD_ERROR_BADBLOCKTYPE;
Chris@0 554
Chris@0 555 if (!lsf && channel->block_type == 2 && si->scfsi[ch] && result == 0)
Chris@0 556 result = MAD_ERROR_BADSCFSI;
Chris@0 557
Chris@0 558 channel->region0_count = 7;
Chris@0 559 channel->region1_count = 36;
Chris@0 560
Chris@0 561 if (mad_bit_read(ptr, 1))
Chris@0 562 channel->flags |= mixed_block_flag;
Chris@0 563 else if (channel->block_type == 2)
Chris@0 564 channel->region0_count = 8;
Chris@0 565
Chris@0 566 for (i = 0; i < 2; ++i)
Chris@0 567 channel->table_select[i] = mad_bit_read(ptr, 5);
Chris@0 568
Chris@0 569 # if defined(DEBUG)
Chris@0 570 channel->table_select[2] = 4; /* not used */
Chris@0 571 # endif
Chris@0 572
Chris@0 573 for (i = 0; i < 3; ++i)
Chris@0 574 channel->subblock_gain[i] = mad_bit_read(ptr, 3);
Chris@0 575 }
Chris@0 576 else {
Chris@0 577 channel->block_type = 0;
Chris@0 578
Chris@0 579 for (i = 0; i < 3; ++i)
Chris@0 580 channel->table_select[i] = mad_bit_read(ptr, 5);
Chris@0 581
Chris@0 582 channel->region0_count = mad_bit_read(ptr, 4);
Chris@0 583 channel->region1_count = mad_bit_read(ptr, 3);
Chris@0 584 }
Chris@0 585
Chris@0 586 /* [preflag,] scalefac_scale, count1table_select */
Chris@0 587 channel->flags |= mad_bit_read(ptr, lsf ? 2 : 3);
Chris@0 588 }
Chris@0 589 }
Chris@0 590
Chris@0 591 return result;
Chris@0 592 }
Chris@0 593
Chris@0 594 /*
Chris@0 595 * NAME: III_scalefactors_lsf()
Chris@0 596 * DESCRIPTION: decode channel scalefactors for LSF from a bitstream
Chris@0 597 */
Chris@0 598 static
Chris@0 599 unsigned int III_scalefactors_lsf(struct mad_bitptr *ptr,
Chris@0 600 struct channel *channel,
Chris@0 601 struct channel *gr1ch, int mode_extension)
Chris@0 602 {
Chris@0 603 struct mad_bitptr start;
Chris@0 604 unsigned int scalefac_compress, index, slen[4], part, n, i;
Chris@0 605 unsigned char const *nsfb;
Chris@0 606
Chris@0 607 start = *ptr;
Chris@0 608
Chris@0 609 scalefac_compress = channel->scalefac_compress;
Chris@0 610 index = (channel->block_type == 2) ?
Chris@0 611 ((channel->flags & mixed_block_flag) ? 2 : 1) : 0;
Chris@0 612
Chris@0 613 if (!((mode_extension & I_STEREO) && gr1ch)) {
Chris@0 614 if (scalefac_compress < 400) {
Chris@0 615 slen[0] = (scalefac_compress >> 4) / 5;
Chris@0 616 slen[1] = (scalefac_compress >> 4) % 5;
Chris@0 617 slen[2] = (scalefac_compress % 16) >> 2;
Chris@0 618 slen[3] = scalefac_compress % 4;
Chris@0 619
Chris@0 620 nsfb = nsfb_table[0][index];
Chris@0 621 }
Chris@0 622 else if (scalefac_compress < 500) {
Chris@0 623 scalefac_compress -= 400;
Chris@0 624
Chris@0 625 slen[0] = (scalefac_compress >> 2) / 5;
Chris@0 626 slen[1] = (scalefac_compress >> 2) % 5;
Chris@0 627 slen[2] = scalefac_compress % 4;
Chris@0 628 slen[3] = 0;
Chris@0 629
Chris@0 630 nsfb = nsfb_table[1][index];
Chris@0 631 }
Chris@0 632 else {
Chris@0 633 scalefac_compress -= 500;
Chris@0 634
Chris@0 635 slen[0] = scalefac_compress / 3;
Chris@0 636 slen[1] = scalefac_compress % 3;
Chris@0 637 slen[2] = 0;
Chris@0 638 slen[3] = 0;
Chris@0 639
Chris@0 640 channel->flags |= preflag;
Chris@0 641
Chris@0 642 nsfb = nsfb_table[2][index];
Chris@0 643 }
Chris@0 644
Chris@0 645 n = 0;
Chris@0 646 for (part = 0; part < 4; ++part) {
Chris@0 647 for (i = 0; i < nsfb[part]; ++i)
Chris@0 648 channel->scalefac[n++] = mad_bit_read(ptr, slen[part]);
Chris@0 649 }
Chris@0 650
Chris@0 651 while (n < 39)
Chris@0 652 channel->scalefac[n++] = 0;
Chris@0 653 }
Chris@0 654 else { /* (mode_extension & I_STEREO) && gr1ch (i.e. ch == 1) */
Chris@0 655 scalefac_compress >>= 1;
Chris@0 656
Chris@0 657 if (scalefac_compress < 180) {
Chris@0 658 slen[0] = scalefac_compress / 36;
Chris@0 659 slen[1] = (scalefac_compress % 36) / 6;
Chris@0 660 slen[2] = (scalefac_compress % 36) % 6;
Chris@0 661 slen[3] = 0;
Chris@0 662
Chris@0 663 nsfb = nsfb_table[3][index];
Chris@0 664 }
Chris@0 665 else if (scalefac_compress < 244) {
Chris@0 666 scalefac_compress -= 180;
Chris@0 667
Chris@0 668 slen[0] = (scalefac_compress % 64) >> 4;
Chris@0 669 slen[1] = (scalefac_compress % 16) >> 2;
Chris@0 670 slen[2] = scalefac_compress % 4;
Chris@0 671 slen[3] = 0;
Chris@0 672
Chris@0 673 nsfb = nsfb_table[4][index];
Chris@0 674 }
Chris@0 675 else {
Chris@0 676 scalefac_compress -= 244;
Chris@0 677
Chris@0 678 slen[0] = scalefac_compress / 3;
Chris@0 679 slen[1] = scalefac_compress % 3;
Chris@0 680 slen[2] = 0;
Chris@0 681 slen[3] = 0;
Chris@0 682
Chris@0 683 nsfb = nsfb_table[5][index];
Chris@0 684 }
Chris@0 685
Chris@0 686 n = 0;
Chris@0 687 for (part = 0; part < 4; ++part) {
Chris@0 688 unsigned int max, is_pos;
Chris@0 689
Chris@0 690 max = (1 << slen[part]) - 1;
Chris@0 691
Chris@0 692 for (i = 0; i < nsfb[part]; ++i) {
Chris@0 693 is_pos = mad_bit_read(ptr, slen[part]);
Chris@0 694
Chris@0 695 channel->scalefac[n] = is_pos;
Chris@0 696 gr1ch->scalefac[n++] = (is_pos == max);
Chris@0 697 }
Chris@0 698 }
Chris@0 699
Chris@0 700 while (n < 39) {
Chris@0 701 channel->scalefac[n] = 0;
Chris@0 702 gr1ch->scalefac[n++] = 0; /* apparently not illegal */
Chris@0 703 }
Chris@0 704 }
Chris@0 705
Chris@0 706 return mad_bit_length(&start, ptr);
Chris@0 707 }
Chris@0 708
Chris@0 709 /*
Chris@0 710 * NAME: III_scalefactors()
Chris@0 711 * DESCRIPTION: decode channel scalefactors of one granule from a bitstream
Chris@0 712 */
Chris@0 713 static
Chris@0 714 unsigned int III_scalefactors(struct mad_bitptr *ptr, struct channel *channel,
Chris@0 715 struct channel const *gr0ch, unsigned int scfsi)
Chris@0 716 {
Chris@0 717 struct mad_bitptr start;
Chris@0 718 unsigned int slen1, slen2, sfbi;
Chris@0 719
Chris@0 720 start = *ptr;
Chris@0 721
Chris@0 722 slen1 = sflen_table[channel->scalefac_compress].slen1;
Chris@0 723 slen2 = sflen_table[channel->scalefac_compress].slen2;
Chris@0 724
Chris@0 725 if (channel->block_type == 2) {
Chris@0 726 unsigned int nsfb;
Chris@0 727
Chris@0 728 sfbi = 0;
Chris@0 729
Chris@0 730 nsfb = (channel->flags & mixed_block_flag) ? 8 + 3 * 3 : 6 * 3;
Chris@0 731 while (nsfb--)
Chris@0 732 channel->scalefac[sfbi++] = mad_bit_read(ptr, slen1);
Chris@0 733
Chris@0 734 nsfb = 6 * 3;
Chris@0 735 while (nsfb--)
Chris@0 736 channel->scalefac[sfbi++] = mad_bit_read(ptr, slen2);
Chris@0 737
Chris@0 738 nsfb = 1 * 3;
Chris@0 739 while (nsfb--)
Chris@0 740 channel->scalefac[sfbi++] = 0;
Chris@0 741 }
Chris@0 742 else { /* channel->block_type != 2 */
Chris@0 743 if (scfsi & 0x8) {
Chris@0 744 for (sfbi = 0; sfbi < 6; ++sfbi)
Chris@0 745 channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
Chris@0 746 }
Chris@0 747 else {
Chris@0 748 for (sfbi = 0; sfbi < 6; ++sfbi)
Chris@0 749 channel->scalefac[sfbi] = mad_bit_read(ptr, slen1);
Chris@0 750 }
Chris@0 751
Chris@0 752 if (scfsi & 0x4) {
Chris@0 753 for (sfbi = 6; sfbi < 11; ++sfbi)
Chris@0 754 channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
Chris@0 755 }
Chris@0 756 else {
Chris@0 757 for (sfbi = 6; sfbi < 11; ++sfbi)
Chris@0 758 channel->scalefac[sfbi] = mad_bit_read(ptr, slen1);
Chris@0 759 }
Chris@0 760
Chris@0 761 if (scfsi & 0x2) {
Chris@0 762 for (sfbi = 11; sfbi < 16; ++sfbi)
Chris@0 763 channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
Chris@0 764 }
Chris@0 765 else {
Chris@0 766 for (sfbi = 11; sfbi < 16; ++sfbi)
Chris@0 767 channel->scalefac[sfbi] = mad_bit_read(ptr, slen2);
Chris@0 768 }
Chris@0 769
Chris@0 770 if (scfsi & 0x1) {
Chris@0 771 for (sfbi = 16; sfbi < 21; ++sfbi)
Chris@0 772 channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
Chris@0 773 }
Chris@0 774 else {
Chris@0 775 for (sfbi = 16; sfbi < 21; ++sfbi)
Chris@0 776 channel->scalefac[sfbi] = mad_bit_read(ptr, slen2);
Chris@0 777 }
Chris@0 778
Chris@0 779 channel->scalefac[21] = 0;
Chris@0 780 }
Chris@0 781
Chris@0 782 return mad_bit_length(&start, ptr);
Chris@0 783 }
Chris@0 784
Chris@0 785 /*
Chris@0 786 * The Layer III formula for requantization and scaling is defined by
Chris@0 787 * section 2.4.3.4.7.1 of ISO/IEC 11172-3, as follows:
Chris@0 788 *
Chris@0 789 * long blocks:
Chris@0 790 * xr[i] = sign(is[i]) * abs(is[i])^(4/3) *
Chris@0 791 * 2^((1/4) * (global_gain - 210)) *
Chris@0 792 * 2^-(scalefac_multiplier *
Chris@0 793 * (scalefac_l[sfb] + preflag * pretab[sfb]))
Chris@0 794 *
Chris@0 795 * short blocks:
Chris@0 796 * xr[i] = sign(is[i]) * abs(is[i])^(4/3) *
Chris@0 797 * 2^((1/4) * (global_gain - 210 - 8 * subblock_gain[w])) *
Chris@0 798 * 2^-(scalefac_multiplier * scalefac_s[sfb][w])
Chris@0 799 *
Chris@0 800 * where:
Chris@0 801 * scalefac_multiplier = (scalefac_scale + 1) / 2
Chris@0 802 *
Chris@0 803 * The routines III_exponents() and III_requantize() facilitate this
Chris@0 804 * calculation.
Chris@0 805 */
Chris@0 806
Chris@0 807 /*
Chris@0 808 * NAME: III_exponents()
Chris@0 809 * DESCRIPTION: calculate scalefactor exponents
Chris@0 810 */
Chris@0 811 static
Chris@0 812 void III_exponents(struct channel const *channel,
Chris@0 813 unsigned char const *sfbwidth, signed int exponents[39])
Chris@0 814 {
Chris@0 815 signed int gain;
Chris@0 816 unsigned int scalefac_multiplier, sfbi;
Chris@0 817
Chris@0 818 gain = (signed int) channel->global_gain - 210;
Chris@0 819 scalefac_multiplier = (channel->flags & scalefac_scale) ? 2 : 1;
Chris@0 820
Chris@0 821 if (channel->block_type == 2) {
Chris@0 822 unsigned int l;
Chris@0 823 signed int gain0, gain1, gain2;
Chris@0 824
Chris@0 825 sfbi = l = 0;
Chris@0 826
Chris@0 827 if (channel->flags & mixed_block_flag) {
Chris@0 828 unsigned int premask;
Chris@0 829
Chris@0 830 premask = (channel->flags & preflag) ? ~0 : 0;
Chris@0 831
Chris@0 832 /* long block subbands 0-1 */
Chris@0 833
Chris@0 834 while (l < 36) {
Chris@0 835 exponents[sfbi] = gain -
Chris@0 836 (signed int) ((channel->scalefac[sfbi] + (pretab[sfbi] & premask)) <<
Chris@0 837 scalefac_multiplier);
Chris@0 838
Chris@0 839 l += sfbwidth[sfbi++];
Chris@0 840 }
Chris@0 841 }
Chris@0 842
Chris@0 843 /* this is probably wrong for 8000 Hz short/mixed blocks */
Chris@0 844
Chris@0 845 gain0 = gain - 8 * (signed int) channel->subblock_gain[0];
Chris@0 846 gain1 = gain - 8 * (signed int) channel->subblock_gain[1];
Chris@0 847 gain2 = gain - 8 * (signed int) channel->subblock_gain[2];
Chris@0 848
Chris@0 849 while (l < 576) {
Chris@0 850 exponents[sfbi + 0] = gain0 -
Chris@0 851 (signed int) (channel->scalefac[sfbi + 0] << scalefac_multiplier);
Chris@0 852 exponents[sfbi + 1] = gain1 -
Chris@0 853 (signed int) (channel->scalefac[sfbi + 1] << scalefac_multiplier);
Chris@0 854 exponents[sfbi + 2] = gain2 -
Chris@0 855 (signed int) (channel->scalefac[sfbi + 2] << scalefac_multiplier);
Chris@0 856
Chris@0 857 l += 3 * sfbwidth[sfbi];
Chris@0 858 sfbi += 3;
Chris@0 859 }
Chris@0 860 }
Chris@0 861 else { /* channel->block_type != 2 */
Chris@0 862 if (channel->flags & preflag) {
Chris@0 863 for (sfbi = 0; sfbi < 22; ++sfbi) {
Chris@0 864 exponents[sfbi] = gain -
Chris@0 865 (signed int) ((channel->scalefac[sfbi] + pretab[sfbi]) <<
Chris@0 866 scalefac_multiplier);
Chris@0 867 }
Chris@0 868 }
Chris@0 869 else {
Chris@0 870 for (sfbi = 0; sfbi < 22; ++sfbi) {
Chris@0 871 exponents[sfbi] = gain -
Chris@0 872 (signed int) (channel->scalefac[sfbi] << scalefac_multiplier);
Chris@0 873 }
Chris@0 874 }
Chris@0 875 }
Chris@0 876 }
Chris@0 877
Chris@0 878 /*
Chris@0 879 * NAME: III_requantize()
Chris@0 880 * DESCRIPTION: requantize one (positive) value
Chris@0 881 */
Chris@0 882 static
Chris@0 883 mad_fixed_t III_requantize(unsigned int value, signed int exp)
Chris@0 884 {
Chris@0 885 mad_fixed_t requantized;
Chris@0 886 signed int frac;
Chris@0 887 struct fixedfloat const *power;
Chris@0 888
Chris@0 889 frac = exp % 4; /* assumes sign(frac) == sign(exp) */
Chris@0 890 exp /= 4;
Chris@0 891
Chris@0 892 power = &rq_table[value];
Chris@0 893 requantized = power->mantissa;
Chris@0 894 exp += power->exponent;
Chris@0 895
Chris@0 896 if (exp < 0) {
Chris@0 897 if (-exp >= sizeof(mad_fixed_t) * CHAR_BIT) {
Chris@0 898 /* underflow */
Chris@0 899 requantized = 0;
Chris@0 900 }
Chris@0 901 else {
Chris@0 902 requantized += 1L << (-exp - 1);
Chris@0 903 requantized >>= -exp;
Chris@0 904 }
Chris@0 905 }
Chris@0 906 else {
Chris@0 907 if (exp >= 5) {
Chris@0 908 /* overflow */
Chris@0 909 # if defined(DEBUG)
Chris@0 910 fprintf(stderr, "requantize overflow (%f * 2^%d)\n",
Chris@0 911 mad_f_todouble(requantized), exp);
Chris@0 912 # endif
Chris@0 913 requantized = MAD_F_MAX;
Chris@0 914 }
Chris@0 915 else
Chris@0 916 requantized <<= exp;
Chris@0 917 }
Chris@0 918
Chris@0 919 return frac ? mad_f_mul(requantized, root_table[3 + frac]) : requantized;
Chris@0 920 }
Chris@0 921
Chris@0 922 /* we must take care that sz >= bits and sz < sizeof(long) lest bits == 0 */
Chris@0 923 # define MASK(cache, sz, bits) \
Chris@0 924 (((cache) >> ((sz) - (bits))) & ((1 << (bits)) - 1))
Chris@0 925 # define MASK1BIT(cache, sz) \
Chris@0 926 ((cache) & (1 << ((sz) - 1)))
Chris@0 927
Chris@0 928 /*
Chris@0 929 * NAME: III_huffdecode()
Chris@0 930 * DESCRIPTION: decode Huffman code words of one channel of one granule
Chris@0 931 */
Chris@0 932 static
Chris@0 933 enum mad_error III_huffdecode(struct mad_bitptr *ptr, mad_fixed_t xr[576],
Chris@0 934 struct channel *channel,
Chris@0 935 unsigned char const *sfbwidth,
Chris@0 936 unsigned int part2_length)
Chris@0 937 {
Chris@0 938 signed int exponents[39], exp;
Chris@0 939 signed int const *expptr;
Chris@0 940 struct mad_bitptr peek;
Chris@0 941 signed int bits_left, cachesz;
Chris@0 942 register mad_fixed_t *xrptr;
Chris@0 943 mad_fixed_t const *sfbound;
Chris@0 944 register unsigned long bitcache;
Chris@0 945
Chris@0 946 bits_left = (signed) channel->part2_3_length - (signed) part2_length;
Chris@0 947 if (bits_left < 0)
Chris@0 948 return MAD_ERROR_BADPART3LEN;
Chris@0 949
Chris@0 950 III_exponents(channel, sfbwidth, exponents);
Chris@0 951
Chris@0 952 peek = *ptr;
Chris@0 953 mad_bit_skip(ptr, bits_left);
Chris@0 954
Chris@0 955 /* align bit reads to byte boundaries */
Chris@0 956 cachesz = mad_bit_bitsleft(&peek);
Chris@0 957 cachesz += ((32 - 1 - 24) + (24 - cachesz)) & ~7;
Chris@0 958
Chris@0 959 bitcache = mad_bit_read(&peek, cachesz);
Chris@0 960 bits_left -= cachesz;
Chris@0 961
Chris@0 962 xrptr = &xr[0];
Chris@0 963
Chris@0 964 /* big_values */
Chris@0 965 {
Chris@0 966 unsigned int region, rcount;
Chris@0 967 struct hufftable const *entry;
Chris@0 968 union huffpair const *table;
Chris@0 969 unsigned int linbits, startbits, big_values, reqhits;
Chris@0 970 mad_fixed_t reqcache[16];
Chris@0 971
Chris@0 972 sfbound = xrptr + *sfbwidth++;
Chris@0 973 rcount = channel->region0_count + 1;
Chris@0 974
Chris@0 975 entry = &mad_huff_pair_table[channel->table_select[region = 0]];
Chris@0 976 table = entry->table;
Chris@0 977 linbits = entry->linbits;
Chris@0 978 startbits = entry->startbits;
Chris@0 979
Chris@0 980 if (table == 0)
Chris@0 981 return MAD_ERROR_BADHUFFTABLE;
Chris@0 982
Chris@0 983 expptr = &exponents[0];
Chris@0 984 exp = *expptr++;
Chris@0 985 reqhits = 0;
Chris@0 986
Chris@0 987 big_values = channel->big_values;
Chris@0 988
Chris@0 989 while (big_values-- && cachesz + bits_left > 0) {
Chris@0 990 union huffpair const *pair;
Chris@0 991 unsigned int clumpsz, value;
Chris@0 992 register mad_fixed_t requantized;
Chris@0 993
Chris@0 994 if (xrptr == sfbound) {
Chris@0 995 sfbound += *sfbwidth++;
Chris@0 996
Chris@0 997 /* change table if region boundary */
Chris@0 998
Chris@0 999 if (--rcount == 0) {
Chris@0 1000 if (region == 0)
Chris@0 1001 rcount = channel->region1_count + 1;
Chris@0 1002 else
Chris@0 1003 rcount = 0; /* all remaining */
Chris@0 1004
Chris@0 1005 entry = &mad_huff_pair_table[channel->table_select[++region]];
Chris@0 1006 table = entry->table;
Chris@0 1007 linbits = entry->linbits;
Chris@0 1008 startbits = entry->startbits;
Chris@0 1009
Chris@0 1010 if (table == 0)
Chris@0 1011 return MAD_ERROR_BADHUFFTABLE;
Chris@0 1012 }
Chris@0 1013
Chris@0 1014 if (exp != *expptr) {
Chris@0 1015 exp = *expptr;
Chris@0 1016 reqhits = 0;
Chris@0 1017 }
Chris@0 1018
Chris@0 1019 ++expptr;
Chris@0 1020 }
Chris@0 1021
Chris@0 1022 if (cachesz < 21) {
Chris@0 1023 unsigned int bits;
Chris@0 1024
Chris@0 1025 bits = ((32 - 1 - 21) + (21 - cachesz)) & ~7;
Chris@0 1026 bitcache = (bitcache << bits) | mad_bit_read(&peek, bits);
Chris@0 1027 cachesz += bits;
Chris@0 1028 bits_left -= bits;
Chris@0 1029 }
Chris@0 1030
Chris@0 1031 /* hcod (0..19) */
Chris@0 1032
Chris@0 1033 clumpsz = startbits;
Chris@0 1034 pair = &table[MASK(bitcache, cachesz, clumpsz)];
Chris@0 1035
Chris@0 1036 while (!pair->final) {
Chris@0 1037 cachesz -= clumpsz;
Chris@0 1038
Chris@0 1039 clumpsz = pair->ptr.bits;
Chris@0 1040 pair = &table[pair->ptr.offset + MASK(bitcache, cachesz, clumpsz)];
Chris@0 1041 }
Chris@0 1042
Chris@0 1043 cachesz -= pair->value.hlen;
Chris@0 1044
Chris@0 1045 if (linbits) {
Chris@0 1046 /* x (0..14) */
Chris@0 1047
Chris@0 1048 value = pair->value.x;
Chris@0 1049
Chris@0 1050 switch (value) {
Chris@0 1051 case 0:
Chris@0 1052 xrptr[0] = 0;
Chris@0 1053 break;
Chris@0 1054
Chris@0 1055 case 15:
Chris@0 1056 if (cachesz < linbits + 2) {
Chris@0 1057 bitcache = (bitcache << 16) | mad_bit_read(&peek, 16);
Chris@0 1058 cachesz += 16;
Chris@0 1059 bits_left -= 16;
Chris@0 1060 }
Chris@0 1061
Chris@0 1062 value += MASK(bitcache, cachesz, linbits);
Chris@0 1063 cachesz -= linbits;
Chris@0 1064
Chris@0 1065 requantized = III_requantize(value, exp);
Chris@0 1066 goto x_final;
Chris@0 1067
Chris@0 1068 default:
Chris@0 1069 if (reqhits & (1 << value))
Chris@0 1070 requantized = reqcache[value];
Chris@0 1071 else {
Chris@0 1072 reqhits |= (1 << value);
Chris@0 1073 requantized = reqcache[value] = III_requantize(value, exp);
Chris@0 1074 }
Chris@0 1075
Chris@0 1076 x_final:
Chris@0 1077 xrptr[0] = MASK1BIT(bitcache, cachesz--) ?
Chris@0 1078 -requantized : requantized;
Chris@0 1079 }
Chris@0 1080
Chris@0 1081 /* y (0..14) */
Chris@0 1082
Chris@0 1083 value = pair->value.y;
Chris@0 1084
Chris@0 1085 switch (value) {
Chris@0 1086 case 0:
Chris@0 1087 xrptr[1] = 0;
Chris@0 1088 break;
Chris@0 1089
Chris@0 1090 case 15:
Chris@0 1091 if (cachesz < linbits + 1) {
Chris@0 1092 bitcache = (bitcache << 16) | mad_bit_read(&peek, 16);
Chris@0 1093 cachesz += 16;
Chris@0 1094 bits_left -= 16;
Chris@0 1095 }
Chris@0 1096
Chris@0 1097 value += MASK(bitcache, cachesz, linbits);
Chris@0 1098 cachesz -= linbits;
Chris@0 1099
Chris@0 1100 requantized = III_requantize(value, exp);
Chris@0 1101 goto y_final;
Chris@0 1102
Chris@0 1103 default:
Chris@0 1104 if (reqhits & (1 << value))
Chris@0 1105 requantized = reqcache[value];
Chris@0 1106 else {
Chris@0 1107 reqhits |= (1 << value);
Chris@0 1108 requantized = reqcache[value] = III_requantize(value, exp);
Chris@0 1109 }
Chris@0 1110
Chris@0 1111 y_final:
Chris@0 1112 xrptr[1] = MASK1BIT(bitcache, cachesz--) ?
Chris@0 1113 -requantized : requantized;
Chris@0 1114 }
Chris@0 1115 }
Chris@0 1116 else {
Chris@0 1117 /* x (0..1) */
Chris@0 1118
Chris@0 1119 value = pair->value.x;
Chris@0 1120
Chris@0 1121 if (value == 0)
Chris@0 1122 xrptr[0] = 0;
Chris@0 1123 else {
Chris@0 1124 if (reqhits & (1 << value))
Chris@0 1125 requantized = reqcache[value];
Chris@0 1126 else {
Chris@0 1127 reqhits |= (1 << value);
Chris@0 1128 requantized = reqcache[value] = III_requantize(value, exp);
Chris@0 1129 }
Chris@0 1130
Chris@0 1131 xrptr[0] = MASK1BIT(bitcache, cachesz--) ?
Chris@0 1132 -requantized : requantized;
Chris@0 1133 }
Chris@0 1134
Chris@0 1135 /* y (0..1) */
Chris@0 1136
Chris@0 1137 value = pair->value.y;
Chris@0 1138
Chris@0 1139 if (value == 0)
Chris@0 1140 xrptr[1] = 0;
Chris@0 1141 else {
Chris@0 1142 if (reqhits & (1 << value))
Chris@0 1143 requantized = reqcache[value];
Chris@0 1144 else {
Chris@0 1145 reqhits |= (1 << value);
Chris@0 1146 requantized = reqcache[value] = III_requantize(value, exp);
Chris@0 1147 }
Chris@0 1148
Chris@0 1149 xrptr[1] = MASK1BIT(bitcache, cachesz--) ?
Chris@0 1150 -requantized : requantized;
Chris@0 1151 }
Chris@0 1152 }
Chris@0 1153
Chris@0 1154 xrptr += 2;
Chris@0 1155 }
Chris@0 1156 }
Chris@0 1157
Chris@0 1158 if (cachesz + bits_left < 0)
Chris@0 1159 return MAD_ERROR_BADHUFFDATA; /* big_values overrun */
Chris@0 1160
Chris@0 1161 /* count1 */
Chris@0 1162 {
Chris@0 1163 union huffquad const *table;
Chris@0 1164 register mad_fixed_t requantized;
Chris@0 1165
Chris@0 1166 table = mad_huff_quad_table[channel->flags & count1table_select];
Chris@0 1167
Chris@0 1168 requantized = III_requantize(1, exp);
Chris@0 1169
Chris@0 1170 while (cachesz + bits_left > 0 && xrptr <= &xr[572]) {
Chris@0 1171 union huffquad const *quad;
Chris@0 1172
Chris@0 1173 /* hcod (1..6) */
Chris@0 1174
Chris@0 1175 if (cachesz < 10) {
Chris@0 1176 bitcache = (bitcache << 16) | mad_bit_read(&peek, 16);
Chris@0 1177 cachesz += 16;
Chris@0 1178 bits_left -= 16;
Chris@0 1179 }
Chris@0 1180
Chris@0 1181 quad = &table[MASK(bitcache, cachesz, 4)];
Chris@0 1182
Chris@0 1183 /* quad tables guaranteed to have at most one extra lookup */
Chris@0 1184 if (!quad->final) {
Chris@0 1185 cachesz -= 4;
Chris@0 1186
Chris@0 1187 quad = &table[quad->ptr.offset +
Chris@0 1188 MASK(bitcache, cachesz, quad->ptr.bits)];
Chris@0 1189 }
Chris@0 1190
Chris@0 1191 cachesz -= quad->value.hlen;
Chris@0 1192
Chris@0 1193 if (xrptr == sfbound) {
Chris@0 1194 sfbound += *sfbwidth++;
Chris@0 1195
Chris@0 1196 if (exp != *expptr) {
Chris@0 1197 exp = *expptr;
Chris@0 1198 requantized = III_requantize(1, exp);
Chris@0 1199 }
Chris@0 1200
Chris@0 1201 ++expptr;
Chris@0 1202 }
Chris@0 1203
Chris@0 1204 /* v (0..1) */
Chris@0 1205
Chris@0 1206 xrptr[0] = quad->value.v ?
Chris@0 1207 (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
Chris@0 1208
Chris@0 1209 /* w (0..1) */
Chris@0 1210
Chris@0 1211 xrptr[1] = quad->value.w ?
Chris@0 1212 (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
Chris@0 1213
Chris@0 1214 xrptr += 2;
Chris@0 1215
Chris@0 1216 if (xrptr == sfbound) {
Chris@0 1217 sfbound += *sfbwidth++;
Chris@0 1218
Chris@0 1219 if (exp != *expptr) {
Chris@0 1220 exp = *expptr;
Chris@0 1221 requantized = III_requantize(1, exp);
Chris@0 1222 }
Chris@0 1223
Chris@0 1224 ++expptr;
Chris@0 1225 }
Chris@0 1226
Chris@0 1227 /* x (0..1) */
Chris@0 1228
Chris@0 1229 xrptr[0] = quad->value.x ?
Chris@0 1230 (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
Chris@0 1231
Chris@0 1232 /* y (0..1) */
Chris@0 1233
Chris@0 1234 xrptr[1] = quad->value.y ?
Chris@0 1235 (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
Chris@0 1236
Chris@0 1237 xrptr += 2;
Chris@0 1238 }
Chris@0 1239
Chris@0 1240 if (cachesz + bits_left < 0) {
Chris@0 1241 # if 0 && defined(DEBUG)
Chris@0 1242 fprintf(stderr, "huffman count1 overrun (%d bits)\n",
Chris@0 1243 -(cachesz + bits_left));
Chris@0 1244 # endif
Chris@0 1245
Chris@0 1246 /* technically the bitstream is misformatted, but apparently
Chris@0 1247 some encoders are just a bit sloppy with stuffing bits */
Chris@0 1248
Chris@0 1249 xrptr -= 4;
Chris@0 1250 }
Chris@0 1251 }
Chris@0 1252
Chris@0 1253 assert(-bits_left <= MAD_BUFFER_GUARD * CHAR_BIT);
Chris@0 1254
Chris@0 1255 # if 0 && defined(DEBUG)
Chris@0 1256 if (bits_left < 0)
Chris@0 1257 fprintf(stderr, "read %d bits too many\n", -bits_left);
Chris@0 1258 else if (cachesz + bits_left > 0)
Chris@0 1259 fprintf(stderr, "%d stuffing bits\n", cachesz + bits_left);
Chris@0 1260 # endif
Chris@0 1261
Chris@0 1262 /* rzero */
Chris@0 1263 while (xrptr < &xr[576]) {
Chris@0 1264 xrptr[0] = 0;
Chris@0 1265 xrptr[1] = 0;
Chris@0 1266
Chris@0 1267 xrptr += 2;
Chris@0 1268 }
Chris@0 1269
Chris@0 1270 return MAD_ERROR_NONE;
Chris@0 1271 }
Chris@0 1272
Chris@0 1273 # undef MASK
Chris@0 1274 # undef MASK1BIT
Chris@0 1275
Chris@0 1276 /*
Chris@0 1277 * NAME: III_reorder()
Chris@0 1278 * DESCRIPTION: reorder frequency lines of a short block into subband order
Chris@0 1279 */
Chris@0 1280 static
Chris@0 1281 void III_reorder(mad_fixed_t xr[576], struct channel const *channel,
Chris@0 1282 unsigned char const sfbwidth[39])
Chris@0 1283 {
Chris@0 1284 mad_fixed_t tmp[32][3][6];
Chris@0 1285 unsigned int sb, l, f, w, sbw[3], sw[3];
Chris@0 1286
Chris@0 1287 /* this is probably wrong for 8000 Hz mixed blocks */
Chris@0 1288
Chris@0 1289 sb = 0;
Chris@0 1290 if (channel->flags & mixed_block_flag) {
Chris@0 1291 sb = 2;
Chris@0 1292
Chris@0 1293 l = 0;
Chris@0 1294 while (l < 36)
Chris@0 1295 l += *sfbwidth++;
Chris@0 1296 }
Chris@0 1297
Chris@0 1298 for (w = 0; w < 3; ++w) {
Chris@0 1299 sbw[w] = sb;
Chris@0 1300 sw[w] = 0;
Chris@0 1301 }
Chris@0 1302
Chris@0 1303 f = *sfbwidth++;
Chris@0 1304 w = 0;
Chris@0 1305
Chris@0 1306 for (l = 18 * sb; l < 576; ++l) {
Chris@0 1307 if (f-- == 0) {
Chris@0 1308 f = *sfbwidth++ - 1;
Chris@0 1309 w = (w + 1) % 3;
Chris@0 1310 }
Chris@0 1311
Chris@0 1312 tmp[sbw[w]][w][sw[w]++] = xr[l];
Chris@0 1313
Chris@0 1314 if (sw[w] == 6) {
Chris@0 1315 sw[w] = 0;
Chris@0 1316 ++sbw[w];
Chris@0 1317 }
Chris@0 1318 }
Chris@0 1319
Chris@0 1320 memcpy(&xr[18 * sb], &tmp[sb], (576 - 18 * sb) * sizeof(mad_fixed_t));
Chris@0 1321 }
Chris@0 1322
Chris@0 1323 /*
Chris@0 1324 * NAME: III_stereo()
Chris@0 1325 * DESCRIPTION: perform joint stereo processing on a granule
Chris@0 1326 */
Chris@0 1327 static
Chris@0 1328 enum mad_error III_stereo(mad_fixed_t xr[2][576],
Chris@0 1329 struct granule const *granule,
Chris@0 1330 struct mad_header *header,
Chris@0 1331 unsigned char const *sfbwidth)
Chris@0 1332 {
Chris@0 1333 short modes[39];
Chris@0 1334 unsigned int sfbi, l, n, i;
Chris@0 1335
Chris@0 1336 if (granule->ch[0].block_type !=
Chris@0 1337 granule->ch[1].block_type ||
Chris@0 1338 (granule->ch[0].flags & mixed_block_flag) !=
Chris@0 1339 (granule->ch[1].flags & mixed_block_flag))
Chris@0 1340 return MAD_ERROR_BADSTEREO;
Chris@0 1341
Chris@0 1342 for (i = 0; i < 39; ++i)
Chris@0 1343 modes[i] = header->mode_extension;
Chris@0 1344
Chris@0 1345 /* intensity stereo */
Chris@0 1346
Chris@0 1347 if (header->mode_extension & I_STEREO) {
Chris@0 1348 struct channel const *right_ch = &granule->ch[1];
Chris@0 1349 mad_fixed_t const *right_xr = xr[1];
Chris@0 1350 unsigned int is_pos;
Chris@0 1351
Chris@0 1352 header->flags |= MAD_FLAG_I_STEREO;
Chris@0 1353
Chris@0 1354 /* first determine which scalefactor bands are to be processed */
Chris@0 1355
Chris@0 1356 if (right_ch->block_type == 2) {
Chris@0 1357 unsigned int lower, start, max, bound[3], w;
Chris@0 1358
Chris@0 1359 lower = start = max = bound[0] = bound[1] = bound[2] = 0;
Chris@0 1360
Chris@0 1361 sfbi = l = 0;
Chris@0 1362
Chris@0 1363 if (right_ch->flags & mixed_block_flag) {
Chris@0 1364 while (l < 36) {
Chris@0 1365 n = sfbwidth[sfbi++];
Chris@0 1366
Chris@0 1367 for (i = 0; i < n; ++i) {
Chris@0 1368 if (right_xr[i]) {
Chris@0 1369 lower = sfbi;
Chris@0 1370 break;
Chris@0 1371 }
Chris@0 1372 }
Chris@0 1373
Chris@0 1374 right_xr += n;
Chris@0 1375 l += n;
Chris@0 1376 }
Chris@0 1377
Chris@0 1378 start = sfbi;
Chris@0 1379 }
Chris@0 1380
Chris@0 1381 w = 0;
Chris@0 1382 while (l < 576) {
Chris@0 1383 n = sfbwidth[sfbi++];
Chris@0 1384
Chris@0 1385 for (i = 0; i < n; ++i) {
Chris@0 1386 if (right_xr[i]) {
Chris@0 1387 max = bound[w] = sfbi;
Chris@0 1388 break;
Chris@0 1389 }
Chris@0 1390 }
Chris@0 1391
Chris@0 1392 right_xr += n;
Chris@0 1393 l += n;
Chris@0 1394 w = (w + 1) % 3;
Chris@0 1395 }
Chris@0 1396
Chris@0 1397 if (max)
Chris@0 1398 lower = start;
Chris@0 1399
Chris@0 1400 /* long blocks */
Chris@0 1401
Chris@0 1402 for (i = 0; i < lower; ++i)
Chris@0 1403 modes[i] = header->mode_extension & ~I_STEREO;
Chris@0 1404
Chris@0 1405 /* short blocks */
Chris@0 1406
Chris@0 1407 w = 0;
Chris@0 1408 for (i = start; i < max; ++i) {
Chris@0 1409 if (i < bound[w])
Chris@0 1410 modes[i] = header->mode_extension & ~I_STEREO;
Chris@0 1411
Chris@0 1412 w = (w + 1) % 3;
Chris@0 1413 }
Chris@0 1414 }
Chris@0 1415 else { /* right_ch->block_type != 2 */
Chris@0 1416 unsigned int bound;
Chris@0 1417
Chris@0 1418 bound = 0;
Chris@0 1419 for (sfbi = l = 0; l < 576; l += n) {
Chris@0 1420 n = sfbwidth[sfbi++];
Chris@0 1421
Chris@0 1422 for (i = 0; i < n; ++i) {
Chris@0 1423 if (right_xr[i]) {
Chris@0 1424 bound = sfbi;
Chris@0 1425 break;
Chris@0 1426 }
Chris@0 1427 }
Chris@0 1428
Chris@0 1429 right_xr += n;
Chris@0 1430 }
Chris@0 1431
Chris@0 1432 for (i = 0; i < bound; ++i)
Chris@0 1433 modes[i] = header->mode_extension & ~I_STEREO;
Chris@0 1434 }
Chris@0 1435
Chris@0 1436 /* now do the actual processing */
Chris@0 1437
Chris@0 1438 if (header->flags & MAD_FLAG_LSF_EXT) {
Chris@0 1439 unsigned char const *illegal_pos = granule[1].ch[1].scalefac;
Chris@0 1440 mad_fixed_t const *lsf_scale;
Chris@0 1441
Chris@0 1442 /* intensity_scale */
Chris@0 1443 lsf_scale = is_lsf_table[right_ch->scalefac_compress & 0x1];
Chris@0 1444
Chris@0 1445 for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
Chris@0 1446 n = sfbwidth[sfbi];
Chris@0 1447
Chris@0 1448 if (!(modes[sfbi] & I_STEREO))
Chris@0 1449 continue;
Chris@0 1450
Chris@0 1451 if (illegal_pos[sfbi]) {
Chris@0 1452 modes[sfbi] &= ~I_STEREO;
Chris@0 1453 continue;
Chris@0 1454 }
Chris@0 1455
Chris@0 1456 is_pos = right_ch->scalefac[sfbi];
Chris@0 1457
Chris@0 1458 for (i = 0; i < n; ++i) {
Chris@0 1459 register mad_fixed_t left;
Chris@0 1460
Chris@0 1461 left = xr[0][l + i];
Chris@0 1462
Chris@0 1463 if (is_pos == 0)
Chris@0 1464 xr[1][l + i] = left;
Chris@0 1465 else {
Chris@0 1466 register mad_fixed_t opposite;
Chris@0 1467
Chris@0 1468 opposite = mad_f_mul(left, lsf_scale[(is_pos - 1) / 2]);
Chris@0 1469
Chris@0 1470 if (is_pos & 1) {
Chris@0 1471 xr[0][l + i] = opposite;
Chris@0 1472 xr[1][l + i] = left;
Chris@0 1473 }
Chris@0 1474 else
Chris@0 1475 xr[1][l + i] = opposite;
Chris@0 1476 }
Chris@0 1477 }
Chris@0 1478 }
Chris@0 1479 }
Chris@0 1480 else { /* !(header->flags & MAD_FLAG_LSF_EXT) */
Chris@0 1481 for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
Chris@0 1482 n = sfbwidth[sfbi];
Chris@0 1483
Chris@0 1484 if (!(modes[sfbi] & I_STEREO))
Chris@0 1485 continue;
Chris@0 1486
Chris@0 1487 is_pos = right_ch->scalefac[sfbi];
Chris@0 1488
Chris@0 1489 if (is_pos >= 7) { /* illegal intensity position */
Chris@0 1490 modes[sfbi] &= ~I_STEREO;
Chris@0 1491 continue;
Chris@0 1492 }
Chris@0 1493
Chris@0 1494 for (i = 0; i < n; ++i) {
Chris@0 1495 register mad_fixed_t left;
Chris@0 1496
Chris@0 1497 left = xr[0][l + i];
Chris@0 1498
Chris@0 1499 xr[0][l + i] = mad_f_mul(left, is_table[ is_pos]);
Chris@0 1500 xr[1][l + i] = mad_f_mul(left, is_table[6 - is_pos]);
Chris@0 1501 }
Chris@0 1502 }
Chris@0 1503 }
Chris@0 1504 }
Chris@0 1505
Chris@0 1506 /* middle/side stereo */
Chris@0 1507
Chris@0 1508 if (header->mode_extension & MS_STEREO) {
Chris@0 1509 register mad_fixed_t invsqrt2;
Chris@0 1510
Chris@0 1511 header->flags |= MAD_FLAG_MS_STEREO;
Chris@0 1512
Chris@0 1513 invsqrt2 = root_table[3 + -2];
Chris@0 1514
Chris@0 1515 for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
Chris@0 1516 n = sfbwidth[sfbi];
Chris@0 1517
Chris@0 1518 if (modes[sfbi] != MS_STEREO)
Chris@0 1519 continue;
Chris@0 1520
Chris@0 1521 for (i = 0; i < n; ++i) {
Chris@0 1522 register mad_fixed_t m, s;
Chris@0 1523
Chris@0 1524 m = xr[0][l + i];
Chris@0 1525 s = xr[1][l + i];
Chris@0 1526
Chris@0 1527 xr[0][l + i] = mad_f_mul(m + s, invsqrt2); /* l = (m + s) / sqrt(2) */
Chris@0 1528 xr[1][l + i] = mad_f_mul(m - s, invsqrt2); /* r = (m - s) / sqrt(2) */
Chris@0 1529 }
Chris@0 1530 }
Chris@0 1531 }
Chris@0 1532
Chris@0 1533 return MAD_ERROR_NONE;
Chris@0 1534 }
Chris@0 1535
Chris@0 1536 /*
Chris@0 1537 * NAME: III_aliasreduce()
Chris@0 1538 * DESCRIPTION: perform frequency line alias reduction
Chris@0 1539 */
Chris@0 1540 static
Chris@0 1541 void III_aliasreduce(mad_fixed_t xr[576], int lines)
Chris@0 1542 {
Chris@0 1543 mad_fixed_t const *bound;
Chris@0 1544 int i;
Chris@0 1545
Chris@0 1546 bound = &xr[lines];
Chris@0 1547 for (xr += 18; xr < bound; xr += 18) {
Chris@0 1548 for (i = 0; i < 8; ++i) {
Chris@0 1549 register mad_fixed_t a, b;
Chris@0 1550 register mad_fixed64hi_t hi;
Chris@0 1551 register mad_fixed64lo_t lo;
Chris@0 1552
Chris@0 1553 a = xr[-1 - i];
Chris@0 1554 b = xr[ i];
Chris@0 1555
Chris@0 1556 # if defined(ASO_ZEROCHECK)
Chris@0 1557 if (a | b) {
Chris@0 1558 # endif
Chris@0 1559 MAD_F_ML0(hi, lo, a, cs[i]);
Chris@0 1560 MAD_F_MLA(hi, lo, -b, ca[i]);
Chris@0 1561
Chris@0 1562 xr[-1 - i] = MAD_F_MLZ(hi, lo);
Chris@0 1563
Chris@0 1564 MAD_F_ML0(hi, lo, b, cs[i]);
Chris@0 1565 MAD_F_MLA(hi, lo, a, ca[i]);
Chris@0 1566
Chris@0 1567 xr[ i] = MAD_F_MLZ(hi, lo);
Chris@0 1568 # if defined(ASO_ZEROCHECK)
Chris@0 1569 }
Chris@0 1570 # endif
Chris@0 1571 }
Chris@0 1572 }
Chris@0 1573 }
Chris@0 1574
Chris@0 1575 # if defined(ASO_IMDCT)
Chris@0 1576 void III_imdct_l(mad_fixed_t const [18], mad_fixed_t [36], unsigned int);
Chris@0 1577 # else
Chris@0 1578 # if 1
Chris@0 1579 static
Chris@0 1580 void fastsdct(mad_fixed_t const x[9], mad_fixed_t y[18])
Chris@0 1581 {
Chris@0 1582 mad_fixed_t a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12;
Chris@0 1583 mad_fixed_t a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25;
Chris@0 1584 mad_fixed_t m0, m1, m2, m3, m4, m5, m6, m7;
Chris@0 1585
Chris@0 1586 enum {
Chris@0 1587 c0 = MAD_F(0x1f838b8d), /* 2 * cos( 1 * PI / 18) */
Chris@0 1588 c1 = MAD_F(0x1bb67ae8), /* 2 * cos( 3 * PI / 18) */
Chris@0 1589 c2 = MAD_F(0x18836fa3), /* 2 * cos( 4 * PI / 18) */
Chris@0 1590 c3 = MAD_F(0x1491b752), /* 2 * cos( 5 * PI / 18) */
Chris@0 1591 c4 = MAD_F(0x0af1d43a), /* 2 * cos( 7 * PI / 18) */
Chris@0 1592 c5 = MAD_F(0x058e86a0), /* 2 * cos( 8 * PI / 18) */
Chris@0 1593 c6 = -MAD_F(0x1e11f642) /* 2 * cos(16 * PI / 18) */
Chris@0 1594 };
Chris@0 1595
Chris@0 1596 a0 = x[3] + x[5];
Chris@0 1597 a1 = x[3] - x[5];
Chris@0 1598 a2 = x[6] + x[2];
Chris@0 1599 a3 = x[6] - x[2];
Chris@0 1600 a4 = x[1] + x[7];
Chris@0 1601 a5 = x[1] - x[7];
Chris@0 1602 a6 = x[8] + x[0];
Chris@0 1603 a7 = x[8] - x[0];
Chris@0 1604
Chris@0 1605 a8 = a0 + a2;
Chris@0 1606 a9 = a0 - a2;
Chris@0 1607 a10 = a0 - a6;
Chris@0 1608 a11 = a2 - a6;
Chris@0 1609 a12 = a8 + a6;
Chris@0 1610 a13 = a1 - a3;
Chris@0 1611 a14 = a13 + a7;
Chris@0 1612 a15 = a3 + a7;
Chris@0 1613 a16 = a1 - a7;
Chris@0 1614 a17 = a1 + a3;
Chris@0 1615
Chris@0 1616 m0 = mad_f_mul(a17, -c3);
Chris@0 1617 m1 = mad_f_mul(a16, -c0);
Chris@0 1618 m2 = mad_f_mul(a15, -c4);
Chris@0 1619 m3 = mad_f_mul(a14, -c1);
Chris@0 1620 m4 = mad_f_mul(a5, -c1);
Chris@0 1621 m5 = mad_f_mul(a11, -c6);
Chris@0 1622 m6 = mad_f_mul(a10, -c5);
Chris@0 1623 m7 = mad_f_mul(a9, -c2);
Chris@0 1624
Chris@0 1625 a18 = x[4] + a4;
Chris@0 1626 a19 = 2 * x[4] - a4;
Chris@0 1627 a20 = a19 + m5;
Chris@0 1628 a21 = a19 - m5;
Chris@0 1629 a22 = a19 + m6;
Chris@0 1630 a23 = m4 + m2;
Chris@0 1631 a24 = m4 - m2;
Chris@0 1632 a25 = m4 + m1;
Chris@0 1633
Chris@0 1634 /* output to every other slot for convenience */
Chris@0 1635
Chris@0 1636 y[ 0] = a18 + a12;
Chris@0 1637 y[ 2] = m0 - a25;
Chris@0 1638 y[ 4] = m7 - a20;
Chris@0 1639 y[ 6] = m3;
Chris@0 1640 y[ 8] = a21 - m6;
Chris@0 1641 y[10] = a24 - m1;
Chris@0 1642 y[12] = a12 - 2 * a18;
Chris@0 1643 y[14] = a23 + m0;
Chris@0 1644 y[16] = a22 + m7;
Chris@0 1645 }
Chris@0 1646
Chris@0 1647 static inline
Chris@0 1648 void sdctII(mad_fixed_t const x[18], mad_fixed_t X[18])
Chris@0 1649 {
Chris@0 1650 mad_fixed_t tmp[9];
Chris@0 1651 int i;
Chris@0 1652
Chris@0 1653 /* scale[i] = 2 * cos(PI * (2 * i + 1) / (2 * 18)) */
Chris@0 1654 static mad_fixed_t const scale[9] = {
Chris@0 1655 MAD_F(0x1fe0d3b4), MAD_F(0x1ee8dd47), MAD_F(0x1d007930),
Chris@0 1656 MAD_F(0x1a367e59), MAD_F(0x16a09e66), MAD_F(0x125abcf8),
Chris@0 1657 MAD_F(0x0d8616bc), MAD_F(0x08483ee1), MAD_F(0x02c9fad7)
Chris@0 1658 };
Chris@0 1659
Chris@0 1660 /* divide the 18-point SDCT-II into two 9-point SDCT-IIs */
Chris@0 1661
Chris@0 1662 /* even input butterfly */
Chris@0 1663
Chris@0 1664 for (i = 0; i < 9; i += 3) {
Chris@0 1665 tmp[i + 0] = x[i + 0] + x[18 - (i + 0) - 1];
Chris@0 1666 tmp[i + 1] = x[i + 1] + x[18 - (i + 1) - 1];
Chris@0 1667 tmp[i + 2] = x[i + 2] + x[18 - (i + 2) - 1];
Chris@0 1668 }
Chris@0 1669
Chris@0 1670 fastsdct(tmp, &X[0]);
Chris@0 1671
Chris@0 1672 /* odd input butterfly and scaling */
Chris@0 1673
Chris@0 1674 for (i = 0; i < 9; i += 3) {
Chris@0 1675 tmp[i + 0] = mad_f_mul(x[i + 0] - x[18 - (i + 0) - 1], scale[i + 0]);
Chris@0 1676 tmp[i + 1] = mad_f_mul(x[i + 1] - x[18 - (i + 1) - 1], scale[i + 1]);
Chris@0 1677 tmp[i + 2] = mad_f_mul(x[i + 2] - x[18 - (i + 2) - 1], scale[i + 2]);
Chris@0 1678 }
Chris@0 1679
Chris@0 1680 fastsdct(tmp, &X[1]);
Chris@0 1681
Chris@0 1682 /* output accumulation */
Chris@0 1683
Chris@0 1684 for (i = 3; i < 18; i += 8) {
Chris@0 1685 X[i + 0] -= X[(i + 0) - 2];
Chris@0 1686 X[i + 2] -= X[(i + 2) - 2];
Chris@0 1687 X[i + 4] -= X[(i + 4) - 2];
Chris@0 1688 X[i + 6] -= X[(i + 6) - 2];
Chris@0 1689 }
Chris@0 1690 }
Chris@0 1691
Chris@0 1692 static inline
Chris@0 1693 void dctIV(mad_fixed_t const y[18], mad_fixed_t X[18])
Chris@0 1694 {
Chris@0 1695 mad_fixed_t tmp[18];
Chris@0 1696 int i;
Chris@0 1697
Chris@0 1698 /* scale[i] = 2 * cos(PI * (2 * i + 1) / (4 * 18)) */
Chris@0 1699 static mad_fixed_t const scale[18] = {
Chris@0 1700 MAD_F(0x1ff833fa), MAD_F(0x1fb9ea93), MAD_F(0x1f3dd120),
Chris@0 1701 MAD_F(0x1e84d969), MAD_F(0x1d906bcf), MAD_F(0x1c62648b),
Chris@0 1702 MAD_F(0x1afd100f), MAD_F(0x1963268b), MAD_F(0x1797c6a4),
Chris@0 1703 MAD_F(0x159e6f5b), MAD_F(0x137af940), MAD_F(0x11318ef3),
Chris@0 1704 MAD_F(0x0ec6a507), MAD_F(0x0c3ef153), MAD_F(0x099f61c5),
Chris@0 1705 MAD_F(0x06ed12c5), MAD_F(0x042d4544), MAD_F(0x0165547c)
Chris@0 1706 };
Chris@0 1707
Chris@0 1708 /* scaling */
Chris@0 1709
Chris@0 1710 for (i = 0; i < 18; i += 3) {
Chris@0 1711 tmp[i + 0] = mad_f_mul(y[i + 0], scale[i + 0]);
Chris@0 1712 tmp[i + 1] = mad_f_mul(y[i + 1], scale[i + 1]);
Chris@0 1713 tmp[i + 2] = mad_f_mul(y[i + 2], scale[i + 2]);
Chris@0 1714 }
Chris@0 1715
Chris@0 1716 /* SDCT-II */
Chris@0 1717
Chris@0 1718 sdctII(tmp, X);
Chris@0 1719
Chris@0 1720 /* scale reduction and output accumulation */
Chris@0 1721
Chris@0 1722 X[0] /= 2;
Chris@0 1723 for (i = 1; i < 17; i += 4) {
Chris@0 1724 X[i + 0] = X[i + 0] / 2 - X[(i + 0) - 1];
Chris@0 1725 X[i + 1] = X[i + 1] / 2 - X[(i + 1) - 1];
Chris@0 1726 X[i + 2] = X[i + 2] / 2 - X[(i + 2) - 1];
Chris@0 1727 X[i + 3] = X[i + 3] / 2 - X[(i + 3) - 1];
Chris@0 1728 }
Chris@0 1729 X[17] = X[17] / 2 - X[16];
Chris@0 1730 }
Chris@0 1731
Chris@0 1732 /*
Chris@0 1733 * NAME: imdct36
Chris@0 1734 * DESCRIPTION: perform X[18]->x[36] IMDCT using Szu-Wei Lee's fast algorithm
Chris@0 1735 */
Chris@0 1736 static inline
Chris@0 1737 void imdct36(mad_fixed_t const x[18], mad_fixed_t y[36])
Chris@0 1738 {
Chris@0 1739 mad_fixed_t tmp[18];
Chris@0 1740 int i;
Chris@0 1741
Chris@0 1742 /* DCT-IV */
Chris@0 1743
Chris@0 1744 dctIV(x, tmp);
Chris@0 1745
Chris@0 1746 /* convert 18-point DCT-IV to 36-point IMDCT */
Chris@0 1747
Chris@0 1748 for (i = 0; i < 9; i += 3) {
Chris@0 1749 y[i + 0] = tmp[9 + (i + 0)];
Chris@0 1750 y[i + 1] = tmp[9 + (i + 1)];
Chris@0 1751 y[i + 2] = tmp[9 + (i + 2)];
Chris@0 1752 }
Chris@0 1753 for (i = 9; i < 27; i += 3) {
Chris@0 1754 y[i + 0] = -tmp[36 - (9 + (i + 0)) - 1];
Chris@0 1755 y[i + 1] = -tmp[36 - (9 + (i + 1)) - 1];
Chris@0 1756 y[i + 2] = -tmp[36 - (9 + (i + 2)) - 1];
Chris@0 1757 }
Chris@0 1758 for (i = 27; i < 36; i += 3) {
Chris@0 1759 y[i + 0] = -tmp[(i + 0) - 27];
Chris@0 1760 y[i + 1] = -tmp[(i + 1) - 27];
Chris@0 1761 y[i + 2] = -tmp[(i + 2) - 27];
Chris@0 1762 }
Chris@0 1763 }
Chris@0 1764 # else
Chris@0 1765 /*
Chris@0 1766 * NAME: imdct36
Chris@0 1767 * DESCRIPTION: perform X[18]->x[36] IMDCT
Chris@0 1768 */
Chris@0 1769 static inline
Chris@0 1770 void imdct36(mad_fixed_t const X[18], mad_fixed_t x[36])
Chris@0 1771 {
Chris@0 1772 mad_fixed_t t0, t1, t2, t3, t4, t5, t6, t7;
Chris@0 1773 mad_fixed_t t8, t9, t10, t11, t12, t13, t14, t15;
Chris@0 1774 register mad_fixed64hi_t hi;
Chris@0 1775 register mad_fixed64lo_t lo;
Chris@0 1776
Chris@0 1777 MAD_F_ML0(hi, lo, X[4], MAD_F(0x0ec835e8));
Chris@0 1778 MAD_F_MLA(hi, lo, X[13], MAD_F(0x061f78aa));
Chris@0 1779
Chris@0 1780 t6 = MAD_F_MLZ(hi, lo);
Chris@0 1781
Chris@0 1782 MAD_F_MLA(hi, lo, (t14 = X[1] - X[10]), -MAD_F(0x061f78aa));
Chris@0 1783 MAD_F_MLA(hi, lo, (t15 = X[7] + X[16]), -MAD_F(0x0ec835e8));
Chris@0 1784
Chris@0 1785 t0 = MAD_F_MLZ(hi, lo);
Chris@0 1786
Chris@0 1787 MAD_F_MLA(hi, lo, (t8 = X[0] - X[11] - X[12]), MAD_F(0x0216a2a2));
Chris@0 1788 MAD_F_MLA(hi, lo, (t9 = X[2] - X[9] - X[14]), MAD_F(0x09bd7ca0));
Chris@0 1789 MAD_F_MLA(hi, lo, (t10 = X[3] - X[8] - X[15]), -MAD_F(0x0cb19346));
Chris@0 1790 MAD_F_MLA(hi, lo, (t11 = X[5] - X[6] - X[17]), -MAD_F(0x0fdcf549));
Chris@0 1791
Chris@0 1792 x[7] = MAD_F_MLZ(hi, lo);
Chris@0 1793 x[10] = -x[7];
Chris@0 1794
Chris@0 1795 MAD_F_ML0(hi, lo, t8, -MAD_F(0x0cb19346));
Chris@0 1796 MAD_F_MLA(hi, lo, t9, MAD_F(0x0fdcf549));
Chris@0 1797 MAD_F_MLA(hi, lo, t10, MAD_F(0x0216a2a2));
Chris@0 1798 MAD_F_MLA(hi, lo, t11, -MAD_F(0x09bd7ca0));
Chris@0 1799
Chris@0 1800 x[19] = x[34] = MAD_F_MLZ(hi, lo) - t0;
Chris@0 1801
Chris@0 1802 t12 = X[0] - X[3] + X[8] - X[11] - X[12] + X[15];
Chris@0 1803 t13 = X[2] + X[5] - X[6] - X[9] - X[14] - X[17];
Chris@0 1804
Chris@0 1805 MAD_F_ML0(hi, lo, t12, -MAD_F(0x0ec835e8));
Chris@0 1806 MAD_F_MLA(hi, lo, t13, MAD_F(0x061f78aa));
Chris@0 1807
Chris@0 1808 x[22] = x[31] = MAD_F_MLZ(hi, lo) + t0;
Chris@0 1809
Chris@0 1810 MAD_F_ML0(hi, lo, X[1], -MAD_F(0x09bd7ca0));
Chris@0 1811 MAD_F_MLA(hi, lo, X[7], MAD_F(0x0216a2a2));
Chris@0 1812 MAD_F_MLA(hi, lo, X[10], -MAD_F(0x0fdcf549));
Chris@0 1813 MAD_F_MLA(hi, lo, X[16], MAD_F(0x0cb19346));
Chris@0 1814
Chris@0 1815 t1 = MAD_F_MLZ(hi, lo) + t6;
Chris@0 1816
Chris@0 1817 MAD_F_ML0(hi, lo, X[0], MAD_F(0x03768962));
Chris@0 1818 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0e313245));
Chris@0 1819 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0ffc19fd));
Chris@0 1820 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0acf37ad));
Chris@0 1821 MAD_F_MLA(hi, lo, X[6], MAD_F(0x04cfb0e2));
Chris@0 1822 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0898c779));
Chris@0 1823 MAD_F_MLA(hi, lo, X[9], MAD_F(0x0d7e8807));
Chris@0 1824 MAD_F_MLA(hi, lo, X[11], MAD_F(0x0f426cb5));
Chris@0 1825 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0bcbe352));
Chris@0 1826 MAD_F_MLA(hi, lo, X[14], MAD_F(0x00b2aa3e));
Chris@0 1827 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x07635284));
Chris@0 1828 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0f9ee890));
Chris@0 1829
Chris@0 1830 x[6] = MAD_F_MLZ(hi, lo) + t1;
Chris@0 1831 x[11] = -x[6];
Chris@0 1832
Chris@0 1833 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0f426cb5));
Chris@0 1834 MAD_F_MLA(hi, lo, X[2], -MAD_F(0x00b2aa3e));
Chris@0 1835 MAD_F_MLA(hi, lo, X[3], MAD_F(0x0898c779));
Chris@0 1836 MAD_F_MLA(hi, lo, X[5], MAD_F(0x0f9ee890));
Chris@0 1837 MAD_F_MLA(hi, lo, X[6], MAD_F(0x0acf37ad));
Chris@0 1838 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x07635284));
Chris@0 1839 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0e313245));
Chris@0 1840 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0bcbe352));
Chris@0 1841 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x03768962));
Chris@0 1842 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0d7e8807));
Chris@0 1843 MAD_F_MLA(hi, lo, X[15], MAD_F(0x0ffc19fd));
Chris@0 1844 MAD_F_MLA(hi, lo, X[17], MAD_F(0x04cfb0e2));
Chris@0 1845
Chris@0 1846 x[23] = x[30] = MAD_F_MLZ(hi, lo) + t1;
Chris@0 1847
Chris@0 1848 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0bcbe352));
Chris@0 1849 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0d7e8807));
Chris@0 1850 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x07635284));
Chris@0 1851 MAD_F_MLA(hi, lo, X[5], MAD_F(0x04cfb0e2));
Chris@0 1852 MAD_F_MLA(hi, lo, X[6], MAD_F(0x0f9ee890));
Chris@0 1853 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0ffc19fd));
Chris@0 1854 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x00b2aa3e));
Chris@0 1855 MAD_F_MLA(hi, lo, X[11], MAD_F(0x03768962));
Chris@0 1856 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0f426cb5));
Chris@0 1857 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0e313245));
Chris@0 1858 MAD_F_MLA(hi, lo, X[15], MAD_F(0x0898c779));
Chris@0 1859 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0acf37ad));
Chris@0 1860
Chris@0 1861 x[18] = x[35] = MAD_F_MLZ(hi, lo) - t1;
Chris@0 1862
Chris@0 1863 MAD_F_ML0(hi, lo, X[4], MAD_F(0x061f78aa));
Chris@0 1864 MAD_F_MLA(hi, lo, X[13], -MAD_F(0x0ec835e8));
Chris@0 1865
Chris@0 1866 t7 = MAD_F_MLZ(hi, lo);
Chris@0 1867
Chris@0 1868 MAD_F_MLA(hi, lo, X[1], -MAD_F(0x0cb19346));
Chris@0 1869 MAD_F_MLA(hi, lo, X[7], MAD_F(0x0fdcf549));
Chris@0 1870 MAD_F_MLA(hi, lo, X[10], MAD_F(0x0216a2a2));
Chris@0 1871 MAD_F_MLA(hi, lo, X[16], -MAD_F(0x09bd7ca0));
Chris@0 1872
Chris@0 1873 t2 = MAD_F_MLZ(hi, lo);
Chris@0 1874
Chris@0 1875 MAD_F_MLA(hi, lo, X[0], MAD_F(0x04cfb0e2));
Chris@0 1876 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0ffc19fd));
Chris@0 1877 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0d7e8807));
Chris@0 1878 MAD_F_MLA(hi, lo, X[5], MAD_F(0x03768962));
Chris@0 1879 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0bcbe352));
Chris@0 1880 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0e313245));
Chris@0 1881 MAD_F_MLA(hi, lo, X[9], MAD_F(0x07635284));
Chris@0 1882 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0acf37ad));
Chris@0 1883 MAD_F_MLA(hi, lo, X[12], MAD_F(0x0f9ee890));
Chris@0 1884 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0898c779));
Chris@0 1885 MAD_F_MLA(hi, lo, X[15], MAD_F(0x00b2aa3e));
Chris@0 1886 MAD_F_MLA(hi, lo, X[17], MAD_F(0x0f426cb5));
Chris@0 1887
Chris@0 1888 x[5] = MAD_F_MLZ(hi, lo);
Chris@0 1889 x[12] = -x[5];
Chris@0 1890
Chris@0 1891 MAD_F_ML0(hi, lo, X[0], MAD_F(0x0acf37ad));
Chris@0 1892 MAD_F_MLA(hi, lo, X[2], -MAD_F(0x0898c779));
Chris@0 1893 MAD_F_MLA(hi, lo, X[3], MAD_F(0x0e313245));
Chris@0 1894 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0f426cb5));
Chris@0 1895 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x03768962));
Chris@0 1896 MAD_F_MLA(hi, lo, X[8], MAD_F(0x00b2aa3e));
Chris@0 1897 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0ffc19fd));
Chris@0 1898 MAD_F_MLA(hi, lo, X[11], MAD_F(0x0f9ee890));
Chris@0 1899 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x04cfb0e2));
Chris@0 1900 MAD_F_MLA(hi, lo, X[14], MAD_F(0x07635284));
Chris@0 1901 MAD_F_MLA(hi, lo, X[15], MAD_F(0x0d7e8807));
Chris@0 1902 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0bcbe352));
Chris@0 1903
Chris@0 1904 x[0] = MAD_F_MLZ(hi, lo) + t2;
Chris@0 1905 x[17] = -x[0];
Chris@0 1906
Chris@0 1907 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0f9ee890));
Chris@0 1908 MAD_F_MLA(hi, lo, X[2], -MAD_F(0x07635284));
Chris@0 1909 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x00b2aa3e));
Chris@0 1910 MAD_F_MLA(hi, lo, X[5], MAD_F(0x0bcbe352));
Chris@0 1911 MAD_F_MLA(hi, lo, X[6], MAD_F(0x0f426cb5));
Chris@0 1912 MAD_F_MLA(hi, lo, X[8], MAD_F(0x0d7e8807));
Chris@0 1913 MAD_F_MLA(hi, lo, X[9], MAD_F(0x0898c779));
Chris@0 1914 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x04cfb0e2));
Chris@0 1915 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0acf37ad));
Chris@0 1916 MAD_F_MLA(hi, lo, X[14], -MAD_F(0x0ffc19fd));
Chris@0 1917 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0e313245));
Chris@0 1918 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x03768962));
Chris@0 1919
Chris@0 1920 x[24] = x[29] = MAD_F_MLZ(hi, lo) + t2;
Chris@0 1921
Chris@0 1922 MAD_F_ML0(hi, lo, X[1], -MAD_F(0x0216a2a2));
Chris@0 1923 MAD_F_MLA(hi, lo, X[7], -MAD_F(0x09bd7ca0));
Chris@0 1924 MAD_F_MLA(hi, lo, X[10], MAD_F(0x0cb19346));
Chris@0 1925 MAD_F_MLA(hi, lo, X[16], MAD_F(0x0fdcf549));
Chris@0 1926
Chris@0 1927 t3 = MAD_F_MLZ(hi, lo) + t7;
Chris@0 1928
Chris@0 1929 MAD_F_ML0(hi, lo, X[0], MAD_F(0x00b2aa3e));
Chris@0 1930 MAD_F_MLA(hi, lo, X[2], MAD_F(0x03768962));
Chris@0 1931 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x04cfb0e2));
Chris@0 1932 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x07635284));
Chris@0 1933 MAD_F_MLA(hi, lo, X[6], MAD_F(0x0898c779));
Chris@0 1934 MAD_F_MLA(hi, lo, X[8], MAD_F(0x0acf37ad));
Chris@0 1935 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0bcbe352));
Chris@0 1936 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0d7e8807));
Chris@0 1937 MAD_F_MLA(hi, lo, X[12], MAD_F(0x0e313245));
Chris@0 1938 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0f426cb5));
Chris@0 1939 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0f9ee890));
Chris@0 1940 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0ffc19fd));
Chris@0 1941
Chris@0 1942 x[8] = MAD_F_MLZ(hi, lo) + t3;
Chris@0 1943 x[9] = -x[8];
Chris@0 1944
Chris@0 1945 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0e313245));
Chris@0 1946 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0bcbe352));
Chris@0 1947 MAD_F_MLA(hi, lo, X[3], MAD_F(0x0f9ee890));
Chris@0 1948 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0898c779));
Chris@0 1949 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0ffc19fd));
Chris@0 1950 MAD_F_MLA(hi, lo, X[8], MAD_F(0x04cfb0e2));
Chris@0 1951 MAD_F_MLA(hi, lo, X[9], MAD_F(0x0f426cb5));
Chris@0 1952 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x00b2aa3e));
Chris@0 1953 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0d7e8807));
Chris@0 1954 MAD_F_MLA(hi, lo, X[14], -MAD_F(0x03768962));
Chris@0 1955 MAD_F_MLA(hi, lo, X[15], MAD_F(0x0acf37ad));
Chris@0 1956 MAD_F_MLA(hi, lo, X[17], MAD_F(0x07635284));
Chris@0 1957
Chris@0 1958 x[21] = x[32] = MAD_F_MLZ(hi, lo) + t3;
Chris@0 1959
Chris@0 1960 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0d7e8807));
Chris@0 1961 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0f426cb5));
Chris@0 1962 MAD_F_MLA(hi, lo, X[3], MAD_F(0x0acf37ad));
Chris@0 1963 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0ffc19fd));
Chris@0 1964 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x07635284));
Chris@0 1965 MAD_F_MLA(hi, lo, X[8], MAD_F(0x0f9ee890));
Chris@0 1966 MAD_F_MLA(hi, lo, X[9], MAD_F(0x03768962));
Chris@0 1967 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0e313245));
Chris@0 1968 MAD_F_MLA(hi, lo, X[12], MAD_F(0x00b2aa3e));
Chris@0 1969 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0bcbe352));
Chris@0 1970 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x04cfb0e2));
Chris@0 1971 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0898c779));
Chris@0 1972
Chris@0 1973 x[20] = x[33] = MAD_F_MLZ(hi, lo) - t3;
Chris@0 1974
Chris@0 1975 MAD_F_ML0(hi, lo, t14, -MAD_F(0x0ec835e8));
Chris@0 1976 MAD_F_MLA(hi, lo, t15, MAD_F(0x061f78aa));
Chris@0 1977
Chris@0 1978 t4 = MAD_F_MLZ(hi, lo) - t7;
Chris@0 1979
Chris@0 1980 MAD_F_ML0(hi, lo, t12, MAD_F(0x061f78aa));
Chris@0 1981 MAD_F_MLA(hi, lo, t13, MAD_F(0x0ec835e8));
Chris@0 1982
Chris@0 1983 x[4] = MAD_F_MLZ(hi, lo) + t4;
Chris@0 1984 x[13] = -x[4];
Chris@0 1985
Chris@0 1986 MAD_F_ML0(hi, lo, t8, MAD_F(0x09bd7ca0));
Chris@0 1987 MAD_F_MLA(hi, lo, t9, -MAD_F(0x0216a2a2));
Chris@0 1988 MAD_F_MLA(hi, lo, t10, MAD_F(0x0fdcf549));
Chris@0 1989 MAD_F_MLA(hi, lo, t11, -MAD_F(0x0cb19346));
Chris@0 1990
Chris@0 1991 x[1] = MAD_F_MLZ(hi, lo) + t4;
Chris@0 1992 x[16] = -x[1];
Chris@0 1993
Chris@0 1994 MAD_F_ML0(hi, lo, t8, -MAD_F(0x0fdcf549));
Chris@0 1995 MAD_F_MLA(hi, lo, t9, -MAD_F(0x0cb19346));
Chris@0 1996 MAD_F_MLA(hi, lo, t10, -MAD_F(0x09bd7ca0));
Chris@0 1997 MAD_F_MLA(hi, lo, t11, -MAD_F(0x0216a2a2));
Chris@0 1998
Chris@0 1999 x[25] = x[28] = MAD_F_MLZ(hi, lo) + t4;
Chris@0 2000
Chris@0 2001 MAD_F_ML0(hi, lo, X[1], -MAD_F(0x0fdcf549));
Chris@0 2002 MAD_F_MLA(hi, lo, X[7], -MAD_F(0x0cb19346));
Chris@0 2003 MAD_F_MLA(hi, lo, X[10], -MAD_F(0x09bd7ca0));
Chris@0 2004 MAD_F_MLA(hi, lo, X[16], -MAD_F(0x0216a2a2));
Chris@0 2005
Chris@0 2006 t5 = MAD_F_MLZ(hi, lo) - t6;
Chris@0 2007
Chris@0 2008 MAD_F_ML0(hi, lo, X[0], MAD_F(0x0898c779));
Chris@0 2009 MAD_F_MLA(hi, lo, X[2], MAD_F(0x04cfb0e2));
Chris@0 2010 MAD_F_MLA(hi, lo, X[3], MAD_F(0x0bcbe352));
Chris@0 2011 MAD_F_MLA(hi, lo, X[5], MAD_F(0x00b2aa3e));
Chris@0 2012 MAD_F_MLA(hi, lo, X[6], MAD_F(0x0e313245));
Chris@0 2013 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x03768962));
Chris@0 2014 MAD_F_MLA(hi, lo, X[9], MAD_F(0x0f9ee890));
Chris@0 2015 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x07635284));
Chris@0 2016 MAD_F_MLA(hi, lo, X[12], MAD_F(0x0ffc19fd));
Chris@0 2017 MAD_F_MLA(hi, lo, X[14], -MAD_F(0x0acf37ad));
Chris@0 2018 MAD_F_MLA(hi, lo, X[15], MAD_F(0x0f426cb5));
Chris@0 2019 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0d7e8807));
Chris@0 2020
Chris@0 2021 x[2] = MAD_F_MLZ(hi, lo) + t5;
Chris@0 2022 x[15] = -x[2];
Chris@0 2023
Chris@0 2024 MAD_F_ML0(hi, lo, X[0], MAD_F(0x07635284));
Chris@0 2025 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0acf37ad));
Chris@0 2026 MAD_F_MLA(hi, lo, X[3], MAD_F(0x03768962));
Chris@0 2027 MAD_F_MLA(hi, lo, X[5], MAD_F(0x0d7e8807));
Chris@0 2028 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x00b2aa3e));
Chris@0 2029 MAD_F_MLA(hi, lo, X[8], MAD_F(0x0f426cb5));
Chris@0 2030 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x04cfb0e2));
Chris@0 2031 MAD_F_MLA(hi, lo, X[11], MAD_F(0x0ffc19fd));
Chris@0 2032 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0898c779));
Chris@0 2033 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0f9ee890));
Chris@0 2034 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0bcbe352));
Chris@0 2035 MAD_F_MLA(hi, lo, X[17], MAD_F(0x0e313245));
Chris@0 2036
Chris@0 2037 x[3] = MAD_F_MLZ(hi, lo) + t5;
Chris@0 2038 x[14] = -x[3];
Chris@0 2039
Chris@0 2040 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0ffc19fd));
Chris@0 2041 MAD_F_MLA(hi, lo, X[2], -MAD_F(0x0f9ee890));
Chris@0 2042 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0f426cb5));
Chris@0 2043 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0e313245));
Chris@0 2044 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0d7e8807));
Chris@0 2045 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0bcbe352));
Chris@0 2046 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0acf37ad));
Chris@0 2047 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0898c779));
Chris@0 2048 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x07635284));
Chris@0 2049 MAD_F_MLA(hi, lo, X[14], -MAD_F(0x04cfb0e2));
Chris@0 2050 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x03768962));
Chris@0 2051 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x00b2aa3e));
Chris@0 2052
Chris@0 2053 x[26] = x[27] = MAD_F_MLZ(hi, lo) + t5;
Chris@0 2054 }
Chris@0 2055 # endif
Chris@0 2056
Chris@0 2057 /*
Chris@0 2058 * NAME: III_imdct_l()
Chris@0 2059 * DESCRIPTION: perform IMDCT and windowing for long blocks
Chris@0 2060 */
Chris@0 2061 static
Chris@0 2062 void III_imdct_l(mad_fixed_t const X[18], mad_fixed_t z[36],
Chris@0 2063 unsigned int block_type)
Chris@0 2064 {
Chris@0 2065 unsigned int i;
Chris@0 2066
Chris@0 2067 /* IMDCT */
Chris@0 2068
Chris@0 2069 imdct36(X, z);
Chris@0 2070
Chris@0 2071 /* windowing */
Chris@0 2072
Chris@0 2073 switch (block_type) {
Chris@0 2074 case 0: /* normal window */
Chris@0 2075 # if defined(ASO_INTERLEAVE1)
Chris@0 2076 {
Chris@0 2077 register mad_fixed_t tmp1, tmp2;
Chris@0 2078
Chris@0 2079 tmp1 = window_l[0];
Chris@0 2080 tmp2 = window_l[1];
Chris@0 2081
Chris@0 2082 for (i = 0; i < 34; i += 2) {
Chris@0 2083 z[i + 0] = mad_f_mul(z[i + 0], tmp1);
Chris@0 2084 tmp1 = window_l[i + 2];
Chris@0 2085 z[i + 1] = mad_f_mul(z[i + 1], tmp2);
Chris@0 2086 tmp2 = window_l[i + 3];
Chris@0 2087 }
Chris@0 2088
Chris@0 2089 z[34] = mad_f_mul(z[34], tmp1);
Chris@0 2090 z[35] = mad_f_mul(z[35], tmp2);
Chris@0 2091 }
Chris@0 2092 # elif defined(ASO_INTERLEAVE2)
Chris@0 2093 {
Chris@0 2094 register mad_fixed_t tmp1, tmp2;
Chris@0 2095
Chris@0 2096 tmp1 = z[0];
Chris@0 2097 tmp2 = window_l[0];
Chris@0 2098
Chris@0 2099 for (i = 0; i < 35; ++i) {
Chris@0 2100 z[i] = mad_f_mul(tmp1, tmp2);
Chris@0 2101 tmp1 = z[i + 1];
Chris@0 2102 tmp2 = window_l[i + 1];
Chris@0 2103 }
Chris@0 2104
Chris@0 2105 z[35] = mad_f_mul(tmp1, tmp2);
Chris@0 2106 }
Chris@0 2107 # elif 1
Chris@0 2108 for (i = 0; i < 36; i += 4) {
Chris@0 2109 z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]);
Chris@0 2110 z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]);
Chris@0 2111 z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]);
Chris@0 2112 z[i + 3] = mad_f_mul(z[i + 3], window_l[i + 3]);
Chris@0 2113 }
Chris@0 2114 # else
Chris@0 2115 for (i = 0; i < 36; ++i) z[i] = mad_f_mul(z[i], window_l[i]);
Chris@0 2116 # endif
Chris@0 2117 break;
Chris@0 2118
Chris@0 2119 case 1: /* start block */
Chris@0 2120 for (i = 0; i < 18; i += 3) {
Chris@0 2121 z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]);
Chris@0 2122 z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]);
Chris@0 2123 z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]);
Chris@0 2124 }
Chris@0 2125 /* (i = 18; i < 24; ++i) z[i] unchanged */
Chris@0 2126 for (i = 24; i < 30; ++i) z[i] = mad_f_mul(z[i], window_s[i - 18]);
Chris@0 2127 for (i = 30; i < 36; ++i) z[i] = 0;
Chris@0 2128 break;
Chris@0 2129
Chris@0 2130 case 3: /* stop block */
Chris@0 2131 for (i = 0; i < 6; ++i) z[i] = 0;
Chris@0 2132 for (i = 6; i < 12; ++i) z[i] = mad_f_mul(z[i], window_s[i - 6]);
Chris@0 2133 /* (i = 12; i < 18; ++i) z[i] unchanged */
Chris@0 2134 for (i = 18; i < 36; i += 3) {
Chris@0 2135 z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]);
Chris@0 2136 z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]);
Chris@0 2137 z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]);
Chris@0 2138 }
Chris@0 2139 break;
Chris@0 2140 }
Chris@0 2141 }
Chris@0 2142 # endif /* ASO_IMDCT */
Chris@0 2143
Chris@0 2144 /*
Chris@0 2145 * NAME: III_imdct_s()
Chris@0 2146 * DESCRIPTION: perform IMDCT and windowing for short blocks
Chris@0 2147 */
Chris@0 2148 static
Chris@0 2149 void III_imdct_s(mad_fixed_t const X[18], mad_fixed_t z[36])
Chris@0 2150 {
Chris@0 2151 mad_fixed_t y[36], *yptr;
Chris@0 2152 mad_fixed_t const *wptr;
Chris@0 2153 int w, i;
Chris@0 2154 register mad_fixed64hi_t hi;
Chris@0 2155 register mad_fixed64lo_t lo;
Chris@0 2156
Chris@0 2157 /* IMDCT */
Chris@0 2158
Chris@0 2159 yptr = &y[0];
Chris@0 2160
Chris@0 2161 for (w = 0; w < 3; ++w) {
Chris@0 2162 register mad_fixed_t const (*s)[6];
Chris@0 2163
Chris@0 2164 s = imdct_s;
Chris@0 2165
Chris@0 2166 for (i = 0; i < 3; ++i) {
Chris@0 2167 MAD_F_ML0(hi, lo, X[0], (*s)[0]);
Chris@0 2168 MAD_F_MLA(hi, lo, X[1], (*s)[1]);
Chris@0 2169 MAD_F_MLA(hi, lo, X[2], (*s)[2]);
Chris@0 2170 MAD_F_MLA(hi, lo, X[3], (*s)[3]);
Chris@0 2171 MAD_F_MLA(hi, lo, X[4], (*s)[4]);
Chris@0 2172 MAD_F_MLA(hi, lo, X[5], (*s)[5]);
Chris@0 2173
Chris@0 2174 yptr[i + 0] = MAD_F_MLZ(hi, lo);
Chris@0 2175 yptr[5 - i] = -yptr[i + 0];
Chris@0 2176
Chris@0 2177 ++s;
Chris@0 2178
Chris@0 2179 MAD_F_ML0(hi, lo, X[0], (*s)[0]);
Chris@0 2180 MAD_F_MLA(hi, lo, X[1], (*s)[1]);
Chris@0 2181 MAD_F_MLA(hi, lo, X[2], (*s)[2]);
Chris@0 2182 MAD_F_MLA(hi, lo, X[3], (*s)[3]);
Chris@0 2183 MAD_F_MLA(hi, lo, X[4], (*s)[4]);
Chris@0 2184 MAD_F_MLA(hi, lo, X[5], (*s)[5]);
Chris@0 2185
Chris@0 2186 yptr[ i + 6] = MAD_F_MLZ(hi, lo);
Chris@0 2187 yptr[11 - i] = yptr[i + 6];
Chris@0 2188
Chris@0 2189 ++s;
Chris@0 2190 }
Chris@0 2191
Chris@0 2192 yptr += 12;
Chris@0 2193 X += 6;
Chris@0 2194 }
Chris@0 2195
Chris@0 2196 /* windowing, overlapping and concatenation */
Chris@0 2197
Chris@0 2198 yptr = &y[0];
Chris@0 2199 wptr = &window_s[0];
Chris@0 2200
Chris@0 2201 for (i = 0; i < 6; ++i) {
Chris@0 2202 z[i + 0] = 0;
Chris@0 2203 z[i + 6] = mad_f_mul(yptr[ 0 + 0], wptr[0]);
Chris@0 2204
Chris@0 2205 MAD_F_ML0(hi, lo, yptr[ 0 + 6], wptr[6]);
Chris@0 2206 MAD_F_MLA(hi, lo, yptr[12 + 0], wptr[0]);
Chris@0 2207
Chris@0 2208 z[i + 12] = MAD_F_MLZ(hi, lo);
Chris@0 2209
Chris@0 2210 MAD_F_ML0(hi, lo, yptr[12 + 6], wptr[6]);
Chris@0 2211 MAD_F_MLA(hi, lo, yptr[24 + 0], wptr[0]);
Chris@0 2212
Chris@0 2213 z[i + 18] = MAD_F_MLZ(hi, lo);
Chris@0 2214
Chris@0 2215 z[i + 24] = mad_f_mul(yptr[24 + 6], wptr[6]);
Chris@0 2216 z[i + 30] = 0;
Chris@0 2217
Chris@0 2218 ++yptr;
Chris@0 2219 ++wptr;
Chris@0 2220 }
Chris@0 2221 }
Chris@0 2222
Chris@0 2223 /*
Chris@0 2224 * NAME: III_overlap()
Chris@0 2225 * DESCRIPTION: perform overlap-add of windowed IMDCT outputs
Chris@0 2226 */
Chris@0 2227 static
Chris@0 2228 void III_overlap(mad_fixed_t const output[36], mad_fixed_t overlap[18],
Chris@0 2229 mad_fixed_t sample[18][32], unsigned int sb)
Chris@0 2230 {
Chris@0 2231 unsigned int i;
Chris@0 2232
Chris@0 2233 # if defined(ASO_INTERLEAVE2)
Chris@0 2234 {
Chris@0 2235 register mad_fixed_t tmp1, tmp2;
Chris@0 2236
Chris@0 2237 tmp1 = overlap[0];
Chris@0 2238 tmp2 = overlap[1];
Chris@0 2239
Chris@0 2240 for (i = 0; i < 16; i += 2) {
Chris@0 2241 sample[i + 0][sb] = output[i + 0 + 0] + tmp1;
Chris@0 2242 overlap[i + 0] = output[i + 0 + 18];
Chris@0 2243 tmp1 = overlap[i + 2];
Chris@0 2244
Chris@0 2245 sample[i + 1][sb] = output[i + 1 + 0] + tmp2;
Chris@0 2246 overlap[i + 1] = output[i + 1 + 18];
Chris@0 2247 tmp2 = overlap[i + 3];
Chris@0 2248 }
Chris@0 2249
Chris@0 2250 sample[16][sb] = output[16 + 0] + tmp1;
Chris@0 2251 overlap[16] = output[16 + 18];
Chris@0 2252 sample[17][sb] = output[17 + 0] + tmp2;
Chris@0 2253 overlap[17] = output[17 + 18];
Chris@0 2254 }
Chris@0 2255 # elif 0
Chris@0 2256 for (i = 0; i < 18; i += 2) {
Chris@0 2257 sample[i + 0][sb] = output[i + 0 + 0] + overlap[i + 0];
Chris@0 2258 overlap[i + 0] = output[i + 0 + 18];
Chris@0 2259
Chris@0 2260 sample[i + 1][sb] = output[i + 1 + 0] + overlap[i + 1];
Chris@0 2261 overlap[i + 1] = output[i + 1 + 18];
Chris@0 2262 }
Chris@0 2263 # else
Chris@0 2264 for (i = 0; i < 18; ++i) {
Chris@0 2265 sample[i][sb] = output[i + 0] + overlap[i];
Chris@0 2266 overlap[i] = output[i + 18];
Chris@0 2267 }
Chris@0 2268 # endif
Chris@0 2269 }
Chris@0 2270
Chris@0 2271 /*
Chris@0 2272 * NAME: III_overlap_z()
Chris@0 2273 * DESCRIPTION: perform "overlap-add" of zero IMDCT outputs
Chris@0 2274 */
Chris@0 2275 static inline
Chris@0 2276 void III_overlap_z(mad_fixed_t overlap[18],
Chris@0 2277 mad_fixed_t sample[18][32], unsigned int sb)
Chris@0 2278 {
Chris@0 2279 unsigned int i;
Chris@0 2280
Chris@0 2281 # if defined(ASO_INTERLEAVE2)
Chris@0 2282 {
Chris@0 2283 register mad_fixed_t tmp1, tmp2;
Chris@0 2284
Chris@0 2285 tmp1 = overlap[0];
Chris@0 2286 tmp2 = overlap[1];
Chris@0 2287
Chris@0 2288 for (i = 0; i < 16; i += 2) {
Chris@0 2289 sample[i + 0][sb] = tmp1;
Chris@0 2290 overlap[i + 0] = 0;
Chris@0 2291 tmp1 = overlap[i + 2];
Chris@0 2292
Chris@0 2293 sample[i + 1][sb] = tmp2;
Chris@0 2294 overlap[i + 1] = 0;
Chris@0 2295 tmp2 = overlap[i + 3];
Chris@0 2296 }
Chris@0 2297
Chris@0 2298 sample[16][sb] = tmp1;
Chris@0 2299 overlap[16] = 0;
Chris@0 2300 sample[17][sb] = tmp2;
Chris@0 2301 overlap[17] = 0;
Chris@0 2302 }
Chris@0 2303 # else
Chris@0 2304 for (i = 0; i < 18; ++i) {
Chris@0 2305 sample[i][sb] = overlap[i];
Chris@0 2306 overlap[i] = 0;
Chris@0 2307 }
Chris@0 2308 # endif
Chris@0 2309 }
Chris@0 2310
Chris@0 2311 /*
Chris@0 2312 * NAME: III_freqinver()
Chris@0 2313 * DESCRIPTION: perform subband frequency inversion for odd sample lines
Chris@0 2314 */
Chris@0 2315 static
Chris@0 2316 void III_freqinver(mad_fixed_t sample[18][32], unsigned int sb)
Chris@0 2317 {
Chris@0 2318 unsigned int i;
Chris@0 2319
Chris@0 2320 # if 1 || defined(ASO_INTERLEAVE1) || defined(ASO_INTERLEAVE2)
Chris@0 2321 {
Chris@0 2322 register mad_fixed_t tmp1, tmp2;
Chris@0 2323
Chris@0 2324 tmp1 = sample[1][sb];
Chris@0 2325 tmp2 = sample[3][sb];
Chris@0 2326
Chris@0 2327 for (i = 1; i < 13; i += 4) {
Chris@0 2328 sample[i + 0][sb] = -tmp1;
Chris@0 2329 tmp1 = sample[i + 4][sb];
Chris@0 2330 sample[i + 2][sb] = -tmp2;
Chris@0 2331 tmp2 = sample[i + 6][sb];
Chris@0 2332 }
Chris@0 2333
Chris@0 2334 sample[13][sb] = -tmp1;
Chris@0 2335 tmp1 = sample[17][sb];
Chris@0 2336 sample[15][sb] = -tmp2;
Chris@0 2337 sample[17][sb] = -tmp1;
Chris@0 2338 }
Chris@0 2339 # else
Chris@0 2340 for (i = 1; i < 18; i += 2)
Chris@0 2341 sample[i][sb] = -sample[i][sb];
Chris@0 2342 # endif
Chris@0 2343 }
Chris@0 2344
Chris@0 2345 /*
Chris@0 2346 * NAME: III_decode()
Chris@0 2347 * DESCRIPTION: decode frame main_data
Chris@0 2348 */
Chris@0 2349 static
Chris@0 2350 enum mad_error III_decode(struct mad_bitptr *ptr, struct mad_frame *frame,
Chris@0 2351 struct sideinfo *si, unsigned int nch)
Chris@0 2352 {
Chris@0 2353 struct mad_header *header = &frame->header;
Chris@0 2354 unsigned int sfreqi, ngr, gr;
Chris@0 2355
Chris@0 2356 {
Chris@0 2357 unsigned int sfreq;
Chris@0 2358
Chris@0 2359 sfreq = header->samplerate;
Chris@0 2360 if (header->flags & MAD_FLAG_MPEG_2_5_EXT)
Chris@0 2361 sfreq *= 2;
Chris@0 2362
Chris@0 2363 /* 48000 => 0, 44100 => 1, 32000 => 2,
Chris@0 2364 24000 => 3, 22050 => 4, 16000 => 5 */
Chris@0 2365 sfreqi = ((sfreq >> 7) & 0x000f) +
Chris@0 2366 ((sfreq >> 15) & 0x0001) - 8;
Chris@0 2367
Chris@0 2368 if (header->flags & MAD_FLAG_MPEG_2_5_EXT)
Chris@0 2369 sfreqi += 3;
Chris@0 2370 }
Chris@0 2371
Chris@0 2372 /* scalefactors, Huffman decoding, requantization */
Chris@0 2373
Chris@0 2374 ngr = (header->flags & MAD_FLAG_LSF_EXT) ? 1 : 2;
Chris@0 2375
Chris@0 2376 for (gr = 0; gr < ngr; ++gr) {
Chris@0 2377 struct granule *granule = &si->gr[gr];
Chris@0 2378 unsigned char const *sfbwidth[2];
Chris@0 2379 mad_fixed_t xr[2][576];
Chris@0 2380 unsigned int ch;
Chris@0 2381 enum mad_error error;
Chris@0 2382
Chris@0 2383 for (ch = 0; ch < nch; ++ch) {
Chris@0 2384 struct channel *channel = &granule->ch[ch];
Chris@0 2385 unsigned int part2_length;
Chris@0 2386
Chris@0 2387 sfbwidth[ch] = sfbwidth_table[sfreqi].l;
Chris@0 2388 if (channel->block_type == 2) {
Chris@0 2389 sfbwidth[ch] = (channel->flags & mixed_block_flag) ?
Chris@0 2390 sfbwidth_table[sfreqi].m : sfbwidth_table[sfreqi].s;
Chris@0 2391 }
Chris@0 2392
Chris@0 2393 if (header->flags & MAD_FLAG_LSF_EXT) {
Chris@0 2394 part2_length = III_scalefactors_lsf(ptr, channel,
Chris@0 2395 ch == 0 ? 0 : &si->gr[1].ch[1],
Chris@0 2396 header->mode_extension);
Chris@0 2397 }
Chris@0 2398 else {
Chris@0 2399 part2_length = III_scalefactors(ptr, channel, &si->gr[0].ch[ch],
Chris@0 2400 gr == 0 ? 0 : si->scfsi[ch]);
Chris@0 2401 }
Chris@0 2402
Chris@0 2403 error = III_huffdecode(ptr, xr[ch], channel, sfbwidth[ch], part2_length);
Chris@0 2404 if (error)
Chris@0 2405 return error;
Chris@0 2406 }
Chris@0 2407
Chris@0 2408 /* joint stereo processing */
Chris@0 2409
Chris@0 2410 if (header->mode == MAD_MODE_JOINT_STEREO && header->mode_extension) {
Chris@0 2411 error = III_stereo(xr, granule, header, sfbwidth[0]);
Chris@0 2412 if (error)
Chris@0 2413 return error;
Chris@0 2414 }
Chris@0 2415
Chris@0 2416 /* reordering, alias reduction, IMDCT, overlap-add, frequency inversion */
Chris@0 2417
Chris@0 2418 for (ch = 0; ch < nch; ++ch) {
Chris@0 2419 struct channel const *channel = &granule->ch[ch];
Chris@0 2420 mad_fixed_t (*sample)[32] = &frame->sbsample[ch][18 * gr];
Chris@0 2421 unsigned int sb, l, i, sblimit;
Chris@0 2422 mad_fixed_t output[36];
Chris@0 2423
Chris@0 2424 if (channel->block_type == 2) {
Chris@0 2425 III_reorder(xr[ch], channel, sfbwidth[ch]);
Chris@0 2426
Chris@0 2427 # if !defined(OPT_STRICT)
Chris@0 2428 /*
Chris@0 2429 * According to ISO/IEC 11172-3, "Alias reduction is not applied for
Chris@0 2430 * granules with block_type == 2 (short block)." However, other
Chris@0 2431 * sources suggest alias reduction should indeed be performed on the
Chris@0 2432 * lower two subbands of mixed blocks. Most other implementations do
Chris@0 2433 * this, so by default we will too.
Chris@0 2434 */
Chris@0 2435 if (channel->flags & mixed_block_flag)
Chris@0 2436 III_aliasreduce(xr[ch], 36);
Chris@0 2437 # endif
Chris@0 2438 }
Chris@0 2439 else
Chris@0 2440 III_aliasreduce(xr[ch], 576);
Chris@0 2441
Chris@0 2442 l = 0;
Chris@0 2443
Chris@0 2444 /* subbands 0-1 */
Chris@0 2445
Chris@0 2446 if (channel->block_type != 2 || (channel->flags & mixed_block_flag)) {
Chris@0 2447 unsigned int block_type;
Chris@0 2448
Chris@0 2449 block_type = channel->block_type;
Chris@0 2450 if (channel->flags & mixed_block_flag)
Chris@0 2451 block_type = 0;
Chris@0 2452
Chris@0 2453 /* long blocks */
Chris@0 2454 for (sb = 0; sb < 2; ++sb, l += 18) {
Chris@0 2455 III_imdct_l(&xr[ch][l], output, block_type);
Chris@0 2456 III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
Chris@0 2457 }
Chris@0 2458 }
Chris@0 2459 else {
Chris@0 2460 /* short blocks */
Chris@0 2461 for (sb = 0; sb < 2; ++sb, l += 18) {
Chris@0 2462 III_imdct_s(&xr[ch][l], output);
Chris@0 2463 III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
Chris@0 2464 }
Chris@0 2465 }
Chris@0 2466
Chris@0 2467 III_freqinver(sample, 1);
Chris@0 2468
Chris@0 2469 /* (nonzero) subbands 2-31 */
Chris@0 2470
Chris@0 2471 i = 576;
Chris@0 2472 while (i > 36 && xr[ch][i - 1] == 0)
Chris@0 2473 --i;
Chris@0 2474
Chris@0 2475 sblimit = 32 - (576 - i) / 18;
Chris@0 2476
Chris@0 2477 if (channel->block_type != 2) {
Chris@0 2478 /* long blocks */
Chris@0 2479 for (sb = 2; sb < sblimit; ++sb, l += 18) {
Chris@0 2480 III_imdct_l(&xr[ch][l], output, channel->block_type);
Chris@0 2481 III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
Chris@0 2482
Chris@0 2483 if (sb & 1)
Chris@0 2484 III_freqinver(sample, sb);
Chris@0 2485 }
Chris@0 2486 }
Chris@0 2487 else {
Chris@0 2488 /* short blocks */
Chris@0 2489 for (sb = 2; sb < sblimit; ++sb, l += 18) {
Chris@0 2490 III_imdct_s(&xr[ch][l], output);
Chris@0 2491 III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
Chris@0 2492
Chris@0 2493 if (sb & 1)
Chris@0 2494 III_freqinver(sample, sb);
Chris@0 2495 }
Chris@0 2496 }
Chris@0 2497
Chris@0 2498 /* remaining (zero) subbands */
Chris@0 2499
Chris@0 2500 for (sb = sblimit; sb < 32; ++sb) {
Chris@0 2501 III_overlap_z((*frame->overlap)[ch][sb], sample, sb);
Chris@0 2502
Chris@0 2503 if (sb & 1)
Chris@0 2504 III_freqinver(sample, sb);
Chris@0 2505 }
Chris@0 2506 }
Chris@0 2507 }
Chris@0 2508
Chris@0 2509 return MAD_ERROR_NONE;
Chris@0 2510 }
Chris@0 2511
Chris@0 2512 /*
Chris@0 2513 * NAME: layer->III()
Chris@0 2514 * DESCRIPTION: decode a single Layer III frame
Chris@0 2515 */
Chris@0 2516 int mad_layer_III(struct mad_stream *stream, struct mad_frame *frame)
Chris@0 2517 {
Chris@0 2518 struct mad_header *header = &frame->header;
Chris@0 2519 unsigned int nch, priv_bitlen, next_md_begin = 0;
Chris@0 2520 unsigned int si_len, data_bitlen, md_len;
Chris@0 2521 unsigned int frame_space, frame_used, frame_free;
Chris@0 2522 struct mad_bitptr ptr;
Chris@0 2523 struct sideinfo si;
Chris@0 2524 enum mad_error error;
Chris@0 2525 int result = 0;
Chris@0 2526
Chris@0 2527 /* allocate Layer III dynamic structures */
Chris@0 2528
Chris@0 2529 if (stream->main_data == 0) {
Chris@0 2530 stream->main_data = malloc(MAD_BUFFER_MDLEN);
Chris@0 2531 if (stream->main_data == 0) {
Chris@0 2532 stream->error = MAD_ERROR_NOMEM;
Chris@0 2533 return -1;
Chris@0 2534 }
Chris@0 2535 }
Chris@0 2536
Chris@0 2537 if (frame->overlap == 0) {
Chris@0 2538 frame->overlap = calloc(2 * 32 * 18, sizeof(mad_fixed_t));
Chris@0 2539 if (frame->overlap == 0) {
Chris@0 2540 stream->error = MAD_ERROR_NOMEM;
Chris@0 2541 return -1;
Chris@0 2542 }
Chris@0 2543 }
Chris@0 2544
Chris@0 2545 nch = MAD_NCHANNELS(header);
Chris@0 2546 si_len = (header->flags & MAD_FLAG_LSF_EXT) ?
Chris@0 2547 (nch == 1 ? 9 : 17) : (nch == 1 ? 17 : 32);
Chris@0 2548
Chris@0 2549 /* check frame sanity */
Chris@0 2550
Chris@0 2551 if (stream->next_frame - mad_bit_nextbyte(&stream->ptr) <
Chris@0 2552 (signed int) si_len) {
Chris@0 2553 stream->error = MAD_ERROR_BADFRAMELEN;
Chris@0 2554 stream->md_len = 0;
Chris@0 2555 return -1;
Chris@0 2556 }
Chris@0 2557
Chris@0 2558 /* check CRC word */
Chris@0 2559
Chris@0 2560 if (header->flags & MAD_FLAG_PROTECTION) {
Chris@0 2561 header->crc_check =
Chris@0 2562 mad_bit_crc(stream->ptr, si_len * CHAR_BIT, header->crc_check);
Chris@0 2563
Chris@0 2564 if (header->crc_check != header->crc_target &&
Chris@0 2565 !(frame->options & MAD_OPTION_IGNORECRC)) {
Chris@0 2566 stream->error = MAD_ERROR_BADCRC;
Chris@0 2567 result = -1;
Chris@0 2568 }
Chris@0 2569 }
Chris@0 2570
Chris@0 2571 /* decode frame side information */
Chris@0 2572
Chris@0 2573 error = III_sideinfo(&stream->ptr, nch, header->flags & MAD_FLAG_LSF_EXT,
Chris@0 2574 &si, &data_bitlen, &priv_bitlen);
Chris@0 2575 if (error && result == 0) {
Chris@0 2576 stream->error = error;
Chris@0 2577 result = -1;
Chris@0 2578 }
Chris@0 2579
Chris@0 2580 header->flags |= priv_bitlen;
Chris@0 2581 header->private_bits |= si.private_bits;
Chris@0 2582
Chris@0 2583 /* find main_data of next frame */
Chris@0 2584
Chris@0 2585 {
Chris@0 2586 struct mad_bitptr peek;
Chris@0 2587 unsigned long header;
Chris@0 2588
Chris@0 2589 mad_bit_init(&peek, stream->next_frame);
Chris@0 2590
Chris@0 2591 header = mad_bit_read(&peek, 32);
Chris@0 2592 if ((header & 0xffe60000L) /* syncword | layer */ == 0xffe20000L) {
Chris@0 2593 if (!(header & 0x00010000L)) /* protection_bit */
Chris@0 2594 mad_bit_skip(&peek, 16); /* crc_check */
Chris@0 2595
Chris@0 2596 next_md_begin =
Chris@0 2597 mad_bit_read(&peek, (header & 0x00080000L) /* ID */ ? 9 : 8);
Chris@0 2598 }
Chris@0 2599
Chris@0 2600 mad_bit_finish(&peek);
Chris@0 2601 }
Chris@0 2602
Chris@0 2603 /* find main_data of this frame */
Chris@0 2604
Chris@0 2605 frame_space = stream->next_frame - mad_bit_nextbyte(&stream->ptr);
Chris@0 2606
Chris@0 2607 if (next_md_begin > si.main_data_begin + frame_space)
Chris@0 2608 next_md_begin = 0;
Chris@0 2609
Chris@0 2610 md_len = si.main_data_begin + frame_space - next_md_begin;
Chris@0 2611
Chris@0 2612 frame_used = 0;
Chris@0 2613
Chris@0 2614 if (si.main_data_begin == 0) {
Chris@0 2615 ptr = stream->ptr;
Chris@0 2616 stream->md_len = 0;
Chris@0 2617
Chris@0 2618 frame_used = md_len;
Chris@0 2619 }
Chris@0 2620 else {
Chris@0 2621 if (si.main_data_begin > stream->md_len) {
Chris@0 2622 if (result == 0) {
Chris@0 2623 stream->error = MAD_ERROR_BADDATAPTR;
Chris@0 2624 result = -1;
Chris@0 2625 }
Chris@0 2626 }
Chris@0 2627 else {
Chris@0 2628 mad_bit_init(&ptr,
Chris@0 2629 *stream->main_data + stream->md_len - si.main_data_begin);
Chris@0 2630
Chris@0 2631 if (md_len > si.main_data_begin) {
Chris@0 2632 assert(stream->md_len + md_len -
Chris@0 2633 si.main_data_begin <= MAD_BUFFER_MDLEN);
Chris@0 2634
Chris@0 2635 memcpy(*stream->main_data + stream->md_len,
Chris@0 2636 mad_bit_nextbyte(&stream->ptr),
Chris@0 2637 frame_used = md_len - si.main_data_begin);
Chris@0 2638 stream->md_len += frame_used;
Chris@0 2639 }
Chris@0 2640 }
Chris@0 2641 }
Chris@0 2642
Chris@0 2643 frame_free = frame_space - frame_used;
Chris@0 2644
Chris@0 2645 /* decode main_data */
Chris@0 2646
Chris@0 2647 if (result == 0) {
Chris@0 2648 error = III_decode(&ptr, frame, &si, nch);
Chris@0 2649 if (error) {
Chris@0 2650 stream->error = error;
Chris@0 2651 result = -1;
Chris@0 2652 }
Chris@0 2653
Chris@0 2654 /* designate ancillary bits */
Chris@0 2655
Chris@0 2656 stream->anc_ptr = ptr;
Chris@0 2657 stream->anc_bitlen = md_len * CHAR_BIT - data_bitlen;
Chris@0 2658 }
Chris@0 2659
Chris@0 2660 # if 0 && defined(DEBUG)
Chris@0 2661 fprintf(stderr,
Chris@0 2662 "main_data_begin:%u, md_len:%u, frame_free:%u, "
Chris@0 2663 "data_bitlen:%u, anc_bitlen: %u\n",
Chris@0 2664 si.main_data_begin, md_len, frame_free,
Chris@0 2665 data_bitlen, stream->anc_bitlen);
Chris@0 2666 # endif
Chris@0 2667
Chris@0 2668 /* preload main_data buffer with up to 511 bytes for next frame(s) */
Chris@0 2669
Chris@0 2670 if (frame_free >= next_md_begin) {
Chris@0 2671 memcpy(*stream->main_data,
Chris@0 2672 stream->next_frame - next_md_begin, next_md_begin);
Chris@0 2673 stream->md_len = next_md_begin;
Chris@0 2674 }
Chris@0 2675 else {
Chris@0 2676 if (md_len < si.main_data_begin) {
Chris@0 2677 unsigned int extra;
Chris@0 2678
Chris@0 2679 extra = si.main_data_begin - md_len;
Chris@0 2680 if (extra + frame_free > next_md_begin)
Chris@0 2681 extra = next_md_begin - frame_free;
Chris@0 2682
Chris@0 2683 if (extra < stream->md_len) {
Chris@0 2684 memmove(*stream->main_data,
Chris@0 2685 *stream->main_data + stream->md_len - extra, extra);
Chris@0 2686 stream->md_len = extra;
Chris@0 2687 }
Chris@0 2688 }
Chris@0 2689 else
Chris@0 2690 stream->md_len = 0;
Chris@0 2691
Chris@0 2692 memcpy(*stream->main_data + stream->md_len,
Chris@0 2693 stream->next_frame - frame_free, frame_free);
Chris@0 2694 stream->md_len += frame_free;
Chris@0 2695 }
Chris@0 2696
Chris@0 2697 return result;
Chris@0 2698 }