Chris@0: /* Chris@0: * libmad - MPEG audio decoder library Chris@0: * Copyright (C) 2000-2004 Underbit Technologies, Inc. Chris@0: * Chris@0: * This program is free software; you can redistribute it and/or modify Chris@0: * it under the terms of the GNU General Public License as published by Chris@0: * the Free Software Foundation; either version 2 of the License, or Chris@0: * (at your option) any later version. Chris@0: * Chris@0: * This program is distributed in the hope that it will be useful, Chris@0: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@0: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@0: * GNU General Public License for more details. Chris@0: * Chris@0: * You should have received a copy of the GNU General Public License Chris@0: * along with this program; if not, write to the Free Software Chris@0: * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Chris@0: * Chris@0: * $Id: layer3.c,v 1.43 2004/01/23 09:41:32 rob Exp $ Chris@0: */ Chris@0: Chris@0: # ifdef HAVE_CONFIG_H Chris@0: # include "config.h" Chris@0: # endif Chris@0: Chris@0: # include "global.h" Chris@0: Chris@0: # include Chris@0: # include Chris@0: Chris@0: # ifdef HAVE_ASSERT_H Chris@0: # include Chris@0: # endif Chris@0: Chris@0: # ifdef HAVE_LIMITS_H Chris@0: # include Chris@0: # else Chris@0: # define CHAR_BIT 8 Chris@0: # endif Chris@0: Chris@0: # include "fixed.h" Chris@0: # include "bit.h" Chris@0: # include "stream.h" Chris@0: # include "frame.h" Chris@0: # include "huffman.h" Chris@0: # include "layer3.h" Chris@0: Chris@0: /* --- Layer III ----------------------------------------------------------- */ Chris@0: Chris@0: enum { Chris@0: count1table_select = 0x01, Chris@0: scalefac_scale = 0x02, Chris@0: preflag = 0x04, Chris@0: mixed_block_flag = 0x08 Chris@0: }; Chris@0: Chris@0: enum { Chris@0: I_STEREO = 0x1, Chris@0: MS_STEREO = 0x2 Chris@0: }; Chris@0: Chris@0: struct sideinfo { Chris@0: unsigned int main_data_begin; Chris@0: unsigned int private_bits; Chris@0: Chris@0: unsigned char scfsi[2]; Chris@0: Chris@0: struct granule { Chris@0: struct channel { Chris@0: /* from side info */ Chris@0: unsigned short part2_3_length; Chris@0: unsigned short big_values; Chris@0: unsigned short global_gain; Chris@0: unsigned short scalefac_compress; Chris@0: Chris@0: unsigned char flags; Chris@0: unsigned char block_type; Chris@0: unsigned char table_select[3]; Chris@0: unsigned char subblock_gain[3]; Chris@0: unsigned char region0_count; Chris@0: unsigned char region1_count; Chris@0: Chris@0: /* from main_data */ Chris@0: unsigned char scalefac[39]; /* scalefac_l and/or scalefac_s */ Chris@0: } ch[2]; Chris@0: } gr[2]; Chris@0: }; Chris@0: Chris@0: /* Chris@0: * scalefactor bit lengths Chris@0: * derived from section 2.4.2.7 of ISO/IEC 11172-3 Chris@0: */ Chris@0: static Chris@0: struct { Chris@0: unsigned char slen1; Chris@0: unsigned char slen2; Chris@0: } const sflen_table[16] = { Chris@0: { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, Chris@0: { 3, 0 }, { 1, 1 }, { 1, 2 }, { 1, 3 }, Chris@0: { 2, 1 }, { 2, 2 }, { 2, 3 }, { 3, 1 }, Chris@0: { 3, 2 }, { 3, 3 }, { 4, 2 }, { 4, 3 } Chris@0: }; Chris@0: Chris@0: /* Chris@0: * number of LSF scalefactor band values Chris@0: * derived from section 2.4.3.2 of ISO/IEC 13818-3 Chris@0: */ Chris@0: static Chris@0: unsigned char const nsfb_table[6][3][4] = { Chris@0: { { 6, 5, 5, 5 }, Chris@0: { 9, 9, 9, 9 }, Chris@0: { 6, 9, 9, 9 } }, Chris@0: Chris@0: { { 6, 5, 7, 3 }, Chris@0: { 9, 9, 12, 6 }, Chris@0: { 6, 9, 12, 6 } }, Chris@0: Chris@0: { { 11, 10, 0, 0 }, Chris@0: { 18, 18, 0, 0 }, Chris@0: { 15, 18, 0, 0 } }, Chris@0: Chris@0: { { 7, 7, 7, 0 }, Chris@0: { 12, 12, 12, 0 }, Chris@0: { 6, 15, 12, 0 } }, Chris@0: Chris@0: { { 6, 6, 6, 3 }, Chris@0: { 12, 9, 9, 6 }, Chris@0: { 6, 12, 9, 6 } }, Chris@0: Chris@0: { { 8, 8, 5, 0 }, Chris@0: { 15, 12, 9, 0 }, Chris@0: { 6, 18, 9, 0 } } Chris@0: }; Chris@0: Chris@0: /* Chris@0: * MPEG-1 scalefactor band widths Chris@0: * derived from Table B.8 of ISO/IEC 11172-3 Chris@0: */ Chris@0: static Chris@0: unsigned char const sfb_48000_long[] = { Chris@0: 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, 10, Chris@0: 12, 16, 18, 22, 28, 34, 40, 46, 54, 54, 192 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_44100_long[] = { Chris@0: 4, 4, 4, 4, 4, 4, 6, 6, 8, 8, 10, Chris@0: 12, 16, 20, 24, 28, 34, 42, 50, 54, 76, 158 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_32000_long[] = { Chris@0: 4, 4, 4, 4, 4, 4, 6, 6, 8, 10, 12, Chris@0: 16, 20, 24, 30, 38, 46, 56, 68, 84, 102, 26 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_48000_short[] = { Chris@0: 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, Chris@0: 6, 6, 6, 6, 6, 10, 10, 10, 12, 12, 12, 14, 14, Chris@0: 14, 16, 16, 16, 20, 20, 20, 26, 26, 26, 66, 66, 66 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_44100_short[] = { Chris@0: 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, Chris@0: 6, 6, 8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, Chris@0: 14, 18, 18, 18, 22, 22, 22, 30, 30, 30, 56, 56, 56 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_32000_short[] = { Chris@0: 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, Chris@0: 6, 6, 8, 8, 8, 12, 12, 12, 16, 16, 16, 20, 20, Chris@0: 20, 26, 26, 26, 34, 34, 34, 42, 42, 42, 12, 12, 12 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_48000_mixed[] = { Chris@0: /* long */ 4, 4, 4, 4, 4, 4, 6, 6, Chris@0: /* short */ 4, 4, 4, 6, 6, 6, 6, 6, 6, 10, Chris@0: 10, 10, 12, 12, 12, 14, 14, 14, 16, 16, Chris@0: 16, 20, 20, 20, 26, 26, 26, 66, 66, 66 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_44100_mixed[] = { Chris@0: /* long */ 4, 4, 4, 4, 4, 4, 6, 6, Chris@0: /* short */ 4, 4, 4, 6, 6, 6, 8, 8, 8, 10, Chris@0: 10, 10, 12, 12, 12, 14, 14, 14, 18, 18, Chris@0: 18, 22, 22, 22, 30, 30, 30, 56, 56, 56 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_32000_mixed[] = { Chris@0: /* long */ 4, 4, 4, 4, 4, 4, 6, 6, Chris@0: /* short */ 4, 4, 4, 6, 6, 6, 8, 8, 8, 12, Chris@0: 12, 12, 16, 16, 16, 20, 20, 20, 26, 26, Chris@0: 26, 34, 34, 34, 42, 42, 42, 12, 12, 12 Chris@0: }; Chris@0: Chris@0: /* Chris@0: * MPEG-2 scalefactor band widths Chris@0: * derived from Table B.2 of ISO/IEC 13818-3 Chris@0: */ Chris@0: static Chris@0: unsigned char const sfb_24000_long[] = { Chris@0: 6, 6, 6, 6, 6, 6, 8, 10, 12, 14, 16, Chris@0: 18, 22, 26, 32, 38, 46, 54, 62, 70, 76, 36 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_22050_long[] = { Chris@0: 6, 6, 6, 6, 6, 6, 8, 10, 12, 14, 16, Chris@0: 20, 24, 28, 32, 38, 46, 52, 60, 68, 58, 54 Chris@0: }; Chris@0: Chris@0: # define sfb_16000_long sfb_22050_long Chris@0: Chris@0: static Chris@0: unsigned char const sfb_24000_short[] = { Chris@0: 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, Chris@0: 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 18, 18, Chris@0: 18, 24, 24, 24, 32, 32, 32, 44, 44, 44, 12, 12, 12 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_22050_short[] = { Chris@0: 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, Chris@0: 6, 6, 8, 8, 8, 10, 10, 10, 14, 14, 14, 18, 18, Chris@0: 18, 26, 26, 26, 32, 32, 32, 42, 42, 42, 18, 18, 18 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_16000_short[] = { Chris@0: 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, Chris@0: 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 18, 18, Chris@0: 18, 24, 24, 24, 30, 30, 30, 40, 40, 40, 18, 18, 18 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_24000_mixed[] = { Chris@0: /* long */ 6, 6, 6, 6, 6, 6, Chris@0: /* short */ 6, 6, 6, 8, 8, 8, 10, 10, 10, 12, Chris@0: 12, 12, 14, 14, 14, 18, 18, 18, 24, 24, Chris@0: 24, 32, 32, 32, 44, 44, 44, 12, 12, 12 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_22050_mixed[] = { Chris@0: /* long */ 6, 6, 6, 6, 6, 6, Chris@0: /* short */ 6, 6, 6, 6, 6, 6, 8, 8, 8, 10, Chris@0: 10, 10, 14, 14, 14, 18, 18, 18, 26, 26, Chris@0: 26, 32, 32, 32, 42, 42, 42, 18, 18, 18 Chris@0: }; Chris@0: Chris@0: static Chris@0: unsigned char const sfb_16000_mixed[] = { Chris@0: /* long */ 6, 6, 6, 6, 6, 6, Chris@0: /* short */ 6, 6, 6, 8, 8, 8, 10, 10, 10, 12, Chris@0: 12, 12, 14, 14, 14, 18, 18, 18, 24, 24, Chris@0: 24, 30, 30, 30, 40, 40, 40, 18, 18, 18 Chris@0: }; Chris@0: Chris@0: /* Chris@0: * MPEG 2.5 scalefactor band widths Chris@0: * derived from public sources Chris@0: */ Chris@0: # define sfb_12000_long sfb_16000_long Chris@0: # define sfb_11025_long sfb_12000_long Chris@0: Chris@0: static Chris@0: unsigned char const sfb_8000_long[] = { Chris@0: 12, 12, 12, 12, 12, 12, 16, 20, 24, 28, 32, Chris@0: 40, 48, 56, 64, 76, 90, 2, 2, 2, 2, 2 Chris@0: }; Chris@0: Chris@0: # define sfb_12000_short sfb_16000_short Chris@0: # define sfb_11025_short sfb_12000_short Chris@0: Chris@0: static Chris@0: unsigned char const sfb_8000_short[] = { Chris@0: 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 16, Chris@0: 16, 16, 20, 20, 20, 24, 24, 24, 28, 28, 28, 36, 36, Chris@0: 36, 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 26, 26 Chris@0: }; Chris@0: Chris@0: # define sfb_12000_mixed sfb_16000_mixed Chris@0: # define sfb_11025_mixed sfb_12000_mixed Chris@0: Chris@0: /* the 8000 Hz short block scalefactor bands do not break after Chris@0: the first 36 frequency lines, so this is probably wrong */ Chris@0: static Chris@0: unsigned char const sfb_8000_mixed[] = { Chris@0: /* long */ 12, 12, 12, Chris@0: /* short */ 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16, Chris@0: 20, 20, 20, 24, 24, 24, 28, 28, 28, 36, 36, 36, Chris@0: 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 26, 26 Chris@0: }; Chris@0: Chris@0: static Chris@0: struct { Chris@0: unsigned char const *l; Chris@0: unsigned char const *s; Chris@0: unsigned char const *m; Chris@0: } const sfbwidth_table[9] = { Chris@0: { sfb_48000_long, sfb_48000_short, sfb_48000_mixed }, Chris@0: { sfb_44100_long, sfb_44100_short, sfb_44100_mixed }, Chris@0: { sfb_32000_long, sfb_32000_short, sfb_32000_mixed }, Chris@0: { sfb_24000_long, sfb_24000_short, sfb_24000_mixed }, Chris@0: { sfb_22050_long, sfb_22050_short, sfb_22050_mixed }, Chris@0: { sfb_16000_long, sfb_16000_short, sfb_16000_mixed }, Chris@0: { sfb_12000_long, sfb_12000_short, sfb_12000_mixed }, Chris@0: { sfb_11025_long, sfb_11025_short, sfb_11025_mixed }, Chris@0: { sfb_8000_long, sfb_8000_short, sfb_8000_mixed } Chris@0: }; Chris@0: Chris@0: /* Chris@0: * scalefactor band preemphasis (used only when preflag is set) Chris@0: * derived from Table B.6 of ISO/IEC 11172-3 Chris@0: */ Chris@0: static Chris@0: unsigned char const pretab[22] = { Chris@0: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 0 Chris@0: }; Chris@0: Chris@0: /* Chris@0: * table for requantization Chris@0: * Chris@0: * rq_table[x].mantissa * 2^(rq_table[x].exponent) = x^(4/3) Chris@0: */ Chris@0: static Chris@0: struct fixedfloat { Chris@0: unsigned long mantissa : 27; Chris@0: unsigned short exponent : 5; Chris@0: } const rq_table[8207] = { Chris@0: # include "rq_table.dat" Chris@0: }; Chris@0: Chris@0: /* Chris@0: * fractional powers of two Chris@0: * used for requantization and joint stereo decoding Chris@0: * Chris@0: * root_table[3 + x] = 2^(x/4) Chris@0: */ Chris@0: static Chris@0: mad_fixed_t const root_table[7] = { Chris@0: MAD_F(0x09837f05) /* 2^(-3/4) == 0.59460355750136 */, Chris@0: MAD_F(0x0b504f33) /* 2^(-2/4) == 0.70710678118655 */, Chris@0: MAD_F(0x0d744fcd) /* 2^(-1/4) == 0.84089641525371 */, Chris@0: MAD_F(0x10000000) /* 2^( 0/4) == 1.00000000000000 */, Chris@0: MAD_F(0x1306fe0a) /* 2^(+1/4) == 1.18920711500272 */, Chris@0: MAD_F(0x16a09e66) /* 2^(+2/4) == 1.41421356237310 */, Chris@0: MAD_F(0x1ae89f99) /* 2^(+3/4) == 1.68179283050743 */ Chris@0: }; Chris@0: Chris@0: /* Chris@0: * coefficients for aliasing reduction Chris@0: * derived from Table B.9 of ISO/IEC 11172-3 Chris@0: * Chris@0: * c[] = { -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 } Chris@0: * cs[i] = 1 / sqrt(1 + c[i]^2) Chris@0: * ca[i] = c[i] / sqrt(1 + c[i]^2) Chris@0: */ Chris@0: static Chris@0: mad_fixed_t const cs[8] = { Chris@0: +MAD_F(0x0db84a81) /* +0.857492926 */, +MAD_F(0x0e1b9d7f) /* +0.881741997 */, Chris@0: +MAD_F(0x0f31adcf) /* +0.949628649 */, +MAD_F(0x0fbba815) /* +0.983314592 */, Chris@0: +MAD_F(0x0feda417) /* +0.995517816 */, +MAD_F(0x0ffc8fc8) /* +0.999160558 */, Chris@0: +MAD_F(0x0fff964c) /* +0.999899195 */, +MAD_F(0x0ffff8d3) /* +0.999993155 */ Chris@0: }; Chris@0: Chris@0: static Chris@0: mad_fixed_t const ca[8] = { Chris@0: -MAD_F(0x083b5fe7) /* -0.514495755 */, -MAD_F(0x078c36d2) /* -0.471731969 */, Chris@0: -MAD_F(0x05039814) /* -0.313377454 */, -MAD_F(0x02e91dd1) /* -0.181913200 */, Chris@0: -MAD_F(0x0183603a) /* -0.094574193 */, -MAD_F(0x00a7cb87) /* -0.040965583 */, Chris@0: -MAD_F(0x003a2847) /* -0.014198569 */, -MAD_F(0x000f27b4) /* -0.003699975 */ Chris@0: }; Chris@0: Chris@0: /* Chris@0: * IMDCT coefficients for short blocks Chris@0: * derived from section 2.4.3.4.10.2 of ISO/IEC 11172-3 Chris@0: * Chris@0: * imdct_s[i/even][k] = cos((PI / 24) * (2 * (i / 2) + 7) * (2 * k + 1)) Chris@0: * imdct_s[i /odd][k] = cos((PI / 24) * (2 * (6 + (i-1)/2) + 7) * (2 * k + 1)) Chris@0: */ Chris@0: static Chris@0: mad_fixed_t const imdct_s[6][6] = { Chris@0: # include "imdct_s.dat" Chris@0: }; Chris@0: Chris@0: # if !defined(ASO_IMDCT) Chris@0: /* Chris@0: * windowing coefficients for long blocks Chris@0: * derived from section 2.4.3.4.10.3 of ISO/IEC 11172-3 Chris@0: * Chris@0: * window_l[i] = sin((PI / 36) * (i + 1/2)) Chris@0: */ Chris@0: static Chris@0: mad_fixed_t const window_l[36] = { Chris@0: MAD_F(0x00b2aa3e) /* 0.043619387 */, MAD_F(0x0216a2a2) /* 0.130526192 */, Chris@0: MAD_F(0x03768962) /* 0.216439614 */, MAD_F(0x04cfb0e2) /* 0.300705800 */, Chris@0: MAD_F(0x061f78aa) /* 0.382683432 */, MAD_F(0x07635284) /* 0.461748613 */, Chris@0: MAD_F(0x0898c779) /* 0.537299608 */, MAD_F(0x09bd7ca0) /* 0.608761429 */, Chris@0: MAD_F(0x0acf37ad) /* 0.675590208 */, MAD_F(0x0bcbe352) /* 0.737277337 */, Chris@0: MAD_F(0x0cb19346) /* 0.793353340 */, MAD_F(0x0d7e8807) /* 0.843391446 */, Chris@0: Chris@0: MAD_F(0x0e313245) /* 0.887010833 */, MAD_F(0x0ec835e8) /* 0.923879533 */, Chris@0: MAD_F(0x0f426cb5) /* 0.953716951 */, MAD_F(0x0f9ee890) /* 0.976296007 */, Chris@0: MAD_F(0x0fdcf549) /* 0.991444861 */, MAD_F(0x0ffc19fd) /* 0.999048222 */, Chris@0: MAD_F(0x0ffc19fd) /* 0.999048222 */, MAD_F(0x0fdcf549) /* 0.991444861 */, Chris@0: MAD_F(0x0f9ee890) /* 0.976296007 */, MAD_F(0x0f426cb5) /* 0.953716951 */, Chris@0: MAD_F(0x0ec835e8) /* 0.923879533 */, MAD_F(0x0e313245) /* 0.887010833 */, Chris@0: Chris@0: MAD_F(0x0d7e8807) /* 0.843391446 */, MAD_F(0x0cb19346) /* 0.793353340 */, Chris@0: MAD_F(0x0bcbe352) /* 0.737277337 */, MAD_F(0x0acf37ad) /* 0.675590208 */, Chris@0: MAD_F(0x09bd7ca0) /* 0.608761429 */, MAD_F(0x0898c779) /* 0.537299608 */, Chris@0: MAD_F(0x07635284) /* 0.461748613 */, MAD_F(0x061f78aa) /* 0.382683432 */, Chris@0: MAD_F(0x04cfb0e2) /* 0.300705800 */, MAD_F(0x03768962) /* 0.216439614 */, Chris@0: MAD_F(0x0216a2a2) /* 0.130526192 */, MAD_F(0x00b2aa3e) /* 0.043619387 */, Chris@0: }; Chris@0: # endif /* ASO_IMDCT */ Chris@0: Chris@0: /* Chris@0: * windowing coefficients for short blocks Chris@0: * derived from section 2.4.3.4.10.3 of ISO/IEC 11172-3 Chris@0: * Chris@0: * window_s[i] = sin((PI / 12) * (i + 1/2)) Chris@0: */ Chris@0: static Chris@0: mad_fixed_t const window_s[12] = { Chris@0: MAD_F(0x0216a2a2) /* 0.130526192 */, MAD_F(0x061f78aa) /* 0.382683432 */, Chris@0: MAD_F(0x09bd7ca0) /* 0.608761429 */, MAD_F(0x0cb19346) /* 0.793353340 */, Chris@0: MAD_F(0x0ec835e8) /* 0.923879533 */, MAD_F(0x0fdcf549) /* 0.991444861 */, Chris@0: MAD_F(0x0fdcf549) /* 0.991444861 */, MAD_F(0x0ec835e8) /* 0.923879533 */, Chris@0: MAD_F(0x0cb19346) /* 0.793353340 */, MAD_F(0x09bd7ca0) /* 0.608761429 */, Chris@0: MAD_F(0x061f78aa) /* 0.382683432 */, MAD_F(0x0216a2a2) /* 0.130526192 */, Chris@0: }; Chris@0: Chris@0: /* Chris@0: * coefficients for intensity stereo processing Chris@0: * derived from section 2.4.3.4.9.3 of ISO/IEC 11172-3 Chris@0: * Chris@0: * is_ratio[i] = tan(i * (PI / 12)) Chris@0: * is_table[i] = is_ratio[i] / (1 + is_ratio[i]) Chris@0: */ Chris@0: static Chris@0: mad_fixed_t const is_table[7] = { Chris@0: MAD_F(0x00000000) /* 0.000000000 */, Chris@0: MAD_F(0x0361962f) /* 0.211324865 */, Chris@0: MAD_F(0x05db3d74) /* 0.366025404 */, Chris@0: MAD_F(0x08000000) /* 0.500000000 */, Chris@0: MAD_F(0x0a24c28c) /* 0.633974596 */, Chris@0: MAD_F(0x0c9e69d1) /* 0.788675135 */, Chris@0: MAD_F(0x10000000) /* 1.000000000 */ Chris@0: }; Chris@0: Chris@0: /* Chris@0: * coefficients for LSF intensity stereo processing Chris@0: * derived from section 2.4.3.2 of ISO/IEC 13818-3 Chris@0: * Chris@0: * is_lsf_table[0][i] = (1 / sqrt(sqrt(2)))^(i + 1) Chris@0: * is_lsf_table[1][i] = (1 / sqrt(2)) ^(i + 1) Chris@0: */ Chris@0: static Chris@0: mad_fixed_t const is_lsf_table[2][15] = { Chris@0: { Chris@0: MAD_F(0x0d744fcd) /* 0.840896415 */, Chris@0: MAD_F(0x0b504f33) /* 0.707106781 */, Chris@0: MAD_F(0x09837f05) /* 0.594603558 */, Chris@0: MAD_F(0x08000000) /* 0.500000000 */, Chris@0: MAD_F(0x06ba27e6) /* 0.420448208 */, Chris@0: MAD_F(0x05a8279a) /* 0.353553391 */, Chris@0: MAD_F(0x04c1bf83) /* 0.297301779 */, Chris@0: MAD_F(0x04000000) /* 0.250000000 */, Chris@0: MAD_F(0x035d13f3) /* 0.210224104 */, Chris@0: MAD_F(0x02d413cd) /* 0.176776695 */, Chris@0: MAD_F(0x0260dfc1) /* 0.148650889 */, Chris@0: MAD_F(0x02000000) /* 0.125000000 */, Chris@0: MAD_F(0x01ae89fa) /* 0.105112052 */, Chris@0: MAD_F(0x016a09e6) /* 0.088388348 */, Chris@0: MAD_F(0x01306fe1) /* 0.074325445 */ Chris@0: }, { Chris@0: MAD_F(0x0b504f33) /* 0.707106781 */, Chris@0: MAD_F(0x08000000) /* 0.500000000 */, Chris@0: MAD_F(0x05a8279a) /* 0.353553391 */, Chris@0: MAD_F(0x04000000) /* 0.250000000 */, Chris@0: MAD_F(0x02d413cd) /* 0.176776695 */, Chris@0: MAD_F(0x02000000) /* 0.125000000 */, Chris@0: MAD_F(0x016a09e6) /* 0.088388348 */, Chris@0: MAD_F(0x01000000) /* 0.062500000 */, Chris@0: MAD_F(0x00b504f3) /* 0.044194174 */, Chris@0: MAD_F(0x00800000) /* 0.031250000 */, Chris@0: MAD_F(0x005a827a) /* 0.022097087 */, Chris@0: MAD_F(0x00400000) /* 0.015625000 */, Chris@0: MAD_F(0x002d413d) /* 0.011048543 */, Chris@0: MAD_F(0x00200000) /* 0.007812500 */, Chris@0: MAD_F(0x0016a09e) /* 0.005524272 */ Chris@0: } Chris@0: }; Chris@0: Chris@0: /* Chris@0: * NAME: III_sideinfo() Chris@0: * DESCRIPTION: decode frame side information from a bitstream Chris@0: */ Chris@0: static Chris@0: enum mad_error III_sideinfo(struct mad_bitptr *ptr, unsigned int nch, Chris@0: int lsf, struct sideinfo *si, Chris@0: unsigned int *data_bitlen, Chris@0: unsigned int *priv_bitlen) Chris@0: { Chris@0: unsigned int ngr, gr, ch, i; Chris@0: enum mad_error result = MAD_ERROR_NONE; Chris@0: Chris@0: *data_bitlen = 0; Chris@0: *priv_bitlen = lsf ? ((nch == 1) ? 1 : 2) : ((nch == 1) ? 5 : 3); Chris@0: Chris@0: si->main_data_begin = mad_bit_read(ptr, lsf ? 8 : 9); Chris@0: si->private_bits = mad_bit_read(ptr, *priv_bitlen); Chris@0: Chris@0: ngr = 1; Chris@0: if (!lsf) { Chris@0: ngr = 2; Chris@0: Chris@0: for (ch = 0; ch < nch; ++ch) Chris@0: si->scfsi[ch] = mad_bit_read(ptr, 4); Chris@0: } Chris@0: Chris@0: for (gr = 0; gr < ngr; ++gr) { Chris@0: struct granule *granule = &si->gr[gr]; Chris@0: Chris@0: for (ch = 0; ch < nch; ++ch) { Chris@0: struct channel *channel = &granule->ch[ch]; Chris@0: Chris@0: channel->part2_3_length = mad_bit_read(ptr, 12); Chris@0: channel->big_values = mad_bit_read(ptr, 9); Chris@0: channel->global_gain = mad_bit_read(ptr, 8); Chris@0: channel->scalefac_compress = mad_bit_read(ptr, lsf ? 9 : 4); Chris@0: Chris@0: *data_bitlen += channel->part2_3_length; Chris@0: Chris@0: if (channel->big_values > 288 && result == 0) Chris@0: result = MAD_ERROR_BADBIGVALUES; Chris@0: Chris@0: channel->flags = 0; Chris@0: Chris@0: /* window_switching_flag */ Chris@0: if (mad_bit_read(ptr, 1)) { Chris@0: channel->block_type = mad_bit_read(ptr, 2); Chris@0: Chris@0: if (channel->block_type == 0 && result == 0) Chris@0: result = MAD_ERROR_BADBLOCKTYPE; Chris@0: Chris@0: if (!lsf && channel->block_type == 2 && si->scfsi[ch] && result == 0) Chris@0: result = MAD_ERROR_BADSCFSI; Chris@0: Chris@0: channel->region0_count = 7; Chris@0: channel->region1_count = 36; Chris@0: Chris@0: if (mad_bit_read(ptr, 1)) Chris@0: channel->flags |= mixed_block_flag; Chris@0: else if (channel->block_type == 2) Chris@0: channel->region0_count = 8; Chris@0: Chris@0: for (i = 0; i < 2; ++i) Chris@0: channel->table_select[i] = mad_bit_read(ptr, 5); Chris@0: Chris@0: # if defined(DEBUG) Chris@0: channel->table_select[2] = 4; /* not used */ Chris@0: # endif Chris@0: Chris@0: for (i = 0; i < 3; ++i) Chris@0: channel->subblock_gain[i] = mad_bit_read(ptr, 3); Chris@0: } Chris@0: else { Chris@0: channel->block_type = 0; Chris@0: Chris@0: for (i = 0; i < 3; ++i) Chris@0: channel->table_select[i] = mad_bit_read(ptr, 5); Chris@0: Chris@0: channel->region0_count = mad_bit_read(ptr, 4); Chris@0: channel->region1_count = mad_bit_read(ptr, 3); Chris@0: } Chris@0: Chris@0: /* [preflag,] scalefac_scale, count1table_select */ Chris@0: channel->flags |= mad_bit_read(ptr, lsf ? 2 : 3); Chris@0: } Chris@0: } Chris@0: Chris@0: return result; Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: III_scalefactors_lsf() Chris@0: * DESCRIPTION: decode channel scalefactors for LSF from a bitstream Chris@0: */ Chris@0: static Chris@0: unsigned int III_scalefactors_lsf(struct mad_bitptr *ptr, Chris@0: struct channel *channel, Chris@0: struct channel *gr1ch, int mode_extension) Chris@0: { Chris@0: struct mad_bitptr start; Chris@0: unsigned int scalefac_compress, index, slen[4], part, n, i; Chris@0: unsigned char const *nsfb; Chris@0: Chris@0: start = *ptr; Chris@0: Chris@0: scalefac_compress = channel->scalefac_compress; Chris@0: index = (channel->block_type == 2) ? Chris@0: ((channel->flags & mixed_block_flag) ? 2 : 1) : 0; Chris@0: Chris@0: if (!((mode_extension & I_STEREO) && gr1ch)) { Chris@0: if (scalefac_compress < 400) { Chris@0: slen[0] = (scalefac_compress >> 4) / 5; Chris@0: slen[1] = (scalefac_compress >> 4) % 5; Chris@0: slen[2] = (scalefac_compress % 16) >> 2; Chris@0: slen[3] = scalefac_compress % 4; Chris@0: Chris@0: nsfb = nsfb_table[0][index]; Chris@0: } Chris@0: else if (scalefac_compress < 500) { Chris@0: scalefac_compress -= 400; Chris@0: Chris@0: slen[0] = (scalefac_compress >> 2) / 5; Chris@0: slen[1] = (scalefac_compress >> 2) % 5; Chris@0: slen[2] = scalefac_compress % 4; Chris@0: slen[3] = 0; Chris@0: Chris@0: nsfb = nsfb_table[1][index]; Chris@0: } Chris@0: else { Chris@0: scalefac_compress -= 500; Chris@0: Chris@0: slen[0] = scalefac_compress / 3; Chris@0: slen[1] = scalefac_compress % 3; Chris@0: slen[2] = 0; Chris@0: slen[3] = 0; Chris@0: Chris@0: channel->flags |= preflag; Chris@0: Chris@0: nsfb = nsfb_table[2][index]; Chris@0: } Chris@0: Chris@0: n = 0; Chris@0: for (part = 0; part < 4; ++part) { Chris@0: for (i = 0; i < nsfb[part]; ++i) Chris@0: channel->scalefac[n++] = mad_bit_read(ptr, slen[part]); Chris@0: } Chris@0: Chris@0: while (n < 39) Chris@0: channel->scalefac[n++] = 0; Chris@0: } Chris@0: else { /* (mode_extension & I_STEREO) && gr1ch (i.e. ch == 1) */ Chris@0: scalefac_compress >>= 1; Chris@0: Chris@0: if (scalefac_compress < 180) { Chris@0: slen[0] = scalefac_compress / 36; Chris@0: slen[1] = (scalefac_compress % 36) / 6; Chris@0: slen[2] = (scalefac_compress % 36) % 6; Chris@0: slen[3] = 0; Chris@0: Chris@0: nsfb = nsfb_table[3][index]; Chris@0: } Chris@0: else if (scalefac_compress < 244) { Chris@0: scalefac_compress -= 180; Chris@0: Chris@0: slen[0] = (scalefac_compress % 64) >> 4; Chris@0: slen[1] = (scalefac_compress % 16) >> 2; Chris@0: slen[2] = scalefac_compress % 4; Chris@0: slen[3] = 0; Chris@0: Chris@0: nsfb = nsfb_table[4][index]; Chris@0: } Chris@0: else { Chris@0: scalefac_compress -= 244; Chris@0: Chris@0: slen[0] = scalefac_compress / 3; Chris@0: slen[1] = scalefac_compress % 3; Chris@0: slen[2] = 0; Chris@0: slen[3] = 0; Chris@0: Chris@0: nsfb = nsfb_table[5][index]; Chris@0: } Chris@0: Chris@0: n = 0; Chris@0: for (part = 0; part < 4; ++part) { Chris@0: unsigned int max, is_pos; Chris@0: Chris@0: max = (1 << slen[part]) - 1; Chris@0: Chris@0: for (i = 0; i < nsfb[part]; ++i) { Chris@0: is_pos = mad_bit_read(ptr, slen[part]); Chris@0: Chris@0: channel->scalefac[n] = is_pos; Chris@0: gr1ch->scalefac[n++] = (is_pos == max); Chris@0: } Chris@0: } Chris@0: Chris@0: while (n < 39) { Chris@0: channel->scalefac[n] = 0; Chris@0: gr1ch->scalefac[n++] = 0; /* apparently not illegal */ Chris@0: } Chris@0: } Chris@0: Chris@0: return mad_bit_length(&start, ptr); Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: III_scalefactors() Chris@0: * DESCRIPTION: decode channel scalefactors of one granule from a bitstream Chris@0: */ Chris@0: static Chris@0: unsigned int III_scalefactors(struct mad_bitptr *ptr, struct channel *channel, Chris@0: struct channel const *gr0ch, unsigned int scfsi) Chris@0: { Chris@0: struct mad_bitptr start; Chris@0: unsigned int slen1, slen2, sfbi; Chris@0: Chris@0: start = *ptr; Chris@0: Chris@0: slen1 = sflen_table[channel->scalefac_compress].slen1; Chris@0: slen2 = sflen_table[channel->scalefac_compress].slen2; Chris@0: Chris@0: if (channel->block_type == 2) { Chris@0: unsigned int nsfb; Chris@0: Chris@0: sfbi = 0; Chris@0: Chris@0: nsfb = (channel->flags & mixed_block_flag) ? 8 + 3 * 3 : 6 * 3; Chris@0: while (nsfb--) Chris@0: channel->scalefac[sfbi++] = mad_bit_read(ptr, slen1); Chris@0: Chris@0: nsfb = 6 * 3; Chris@0: while (nsfb--) Chris@0: channel->scalefac[sfbi++] = mad_bit_read(ptr, slen2); Chris@0: Chris@0: nsfb = 1 * 3; Chris@0: while (nsfb--) Chris@0: channel->scalefac[sfbi++] = 0; Chris@0: } Chris@0: else { /* channel->block_type != 2 */ Chris@0: if (scfsi & 0x8) { Chris@0: for (sfbi = 0; sfbi < 6; ++sfbi) Chris@0: channel->scalefac[sfbi] = gr0ch->scalefac[sfbi]; Chris@0: } Chris@0: else { Chris@0: for (sfbi = 0; sfbi < 6; ++sfbi) Chris@0: channel->scalefac[sfbi] = mad_bit_read(ptr, slen1); Chris@0: } Chris@0: Chris@0: if (scfsi & 0x4) { Chris@0: for (sfbi = 6; sfbi < 11; ++sfbi) Chris@0: channel->scalefac[sfbi] = gr0ch->scalefac[sfbi]; Chris@0: } Chris@0: else { Chris@0: for (sfbi = 6; sfbi < 11; ++sfbi) Chris@0: channel->scalefac[sfbi] = mad_bit_read(ptr, slen1); Chris@0: } Chris@0: Chris@0: if (scfsi & 0x2) { Chris@0: for (sfbi = 11; sfbi < 16; ++sfbi) Chris@0: channel->scalefac[sfbi] = gr0ch->scalefac[sfbi]; Chris@0: } Chris@0: else { Chris@0: for (sfbi = 11; sfbi < 16; ++sfbi) Chris@0: channel->scalefac[sfbi] = mad_bit_read(ptr, slen2); Chris@0: } Chris@0: Chris@0: if (scfsi & 0x1) { Chris@0: for (sfbi = 16; sfbi < 21; ++sfbi) Chris@0: channel->scalefac[sfbi] = gr0ch->scalefac[sfbi]; Chris@0: } Chris@0: else { Chris@0: for (sfbi = 16; sfbi < 21; ++sfbi) Chris@0: channel->scalefac[sfbi] = mad_bit_read(ptr, slen2); Chris@0: } Chris@0: Chris@0: channel->scalefac[21] = 0; Chris@0: } Chris@0: Chris@0: return mad_bit_length(&start, ptr); Chris@0: } Chris@0: Chris@0: /* Chris@0: * The Layer III formula for requantization and scaling is defined by Chris@0: * section 2.4.3.4.7.1 of ISO/IEC 11172-3, as follows: Chris@0: * Chris@0: * long blocks: Chris@0: * xr[i] = sign(is[i]) * abs(is[i])^(4/3) * Chris@0: * 2^((1/4) * (global_gain - 210)) * Chris@0: * 2^-(scalefac_multiplier * Chris@0: * (scalefac_l[sfb] + preflag * pretab[sfb])) Chris@0: * Chris@0: * short blocks: Chris@0: * xr[i] = sign(is[i]) * abs(is[i])^(4/3) * Chris@0: * 2^((1/4) * (global_gain - 210 - 8 * subblock_gain[w])) * Chris@0: * 2^-(scalefac_multiplier * scalefac_s[sfb][w]) Chris@0: * Chris@0: * where: Chris@0: * scalefac_multiplier = (scalefac_scale + 1) / 2 Chris@0: * Chris@0: * The routines III_exponents() and III_requantize() facilitate this Chris@0: * calculation. Chris@0: */ Chris@0: Chris@0: /* Chris@0: * NAME: III_exponents() Chris@0: * DESCRIPTION: calculate scalefactor exponents Chris@0: */ Chris@0: static Chris@0: void III_exponents(struct channel const *channel, Chris@0: unsigned char const *sfbwidth, signed int exponents[39]) Chris@0: { Chris@0: signed int gain; Chris@0: unsigned int scalefac_multiplier, sfbi; Chris@0: Chris@0: gain = (signed int) channel->global_gain - 210; Chris@0: scalefac_multiplier = (channel->flags & scalefac_scale) ? 2 : 1; Chris@0: Chris@0: if (channel->block_type == 2) { Chris@0: unsigned int l; Chris@0: signed int gain0, gain1, gain2; Chris@0: Chris@0: sfbi = l = 0; Chris@0: Chris@0: if (channel->flags & mixed_block_flag) { Chris@0: unsigned int premask; Chris@0: Chris@0: premask = (channel->flags & preflag) ? ~0 : 0; Chris@0: Chris@0: /* long block subbands 0-1 */ Chris@0: Chris@0: while (l < 36) { Chris@0: exponents[sfbi] = gain - Chris@0: (signed int) ((channel->scalefac[sfbi] + (pretab[sfbi] & premask)) << Chris@0: scalefac_multiplier); Chris@0: Chris@0: l += sfbwidth[sfbi++]; Chris@0: } Chris@0: } Chris@0: Chris@0: /* this is probably wrong for 8000 Hz short/mixed blocks */ Chris@0: Chris@0: gain0 = gain - 8 * (signed int) channel->subblock_gain[0]; Chris@0: gain1 = gain - 8 * (signed int) channel->subblock_gain[1]; Chris@0: gain2 = gain - 8 * (signed int) channel->subblock_gain[2]; Chris@0: Chris@0: while (l < 576) { Chris@0: exponents[sfbi + 0] = gain0 - Chris@0: (signed int) (channel->scalefac[sfbi + 0] << scalefac_multiplier); Chris@0: exponents[sfbi + 1] = gain1 - Chris@0: (signed int) (channel->scalefac[sfbi + 1] << scalefac_multiplier); Chris@0: exponents[sfbi + 2] = gain2 - Chris@0: (signed int) (channel->scalefac[sfbi + 2] << scalefac_multiplier); Chris@0: Chris@0: l += 3 * sfbwidth[sfbi]; Chris@0: sfbi += 3; Chris@0: } Chris@0: } Chris@0: else { /* channel->block_type != 2 */ Chris@0: if (channel->flags & preflag) { Chris@0: for (sfbi = 0; sfbi < 22; ++sfbi) { Chris@0: exponents[sfbi] = gain - Chris@0: (signed int) ((channel->scalefac[sfbi] + pretab[sfbi]) << Chris@0: scalefac_multiplier); Chris@0: } Chris@0: } Chris@0: else { Chris@0: for (sfbi = 0; sfbi < 22; ++sfbi) { Chris@0: exponents[sfbi] = gain - Chris@0: (signed int) (channel->scalefac[sfbi] << scalefac_multiplier); Chris@0: } Chris@0: } Chris@0: } Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: III_requantize() Chris@0: * DESCRIPTION: requantize one (positive) value Chris@0: */ Chris@0: static Chris@0: mad_fixed_t III_requantize(unsigned int value, signed int exp) Chris@0: { Chris@0: mad_fixed_t requantized; Chris@0: signed int frac; Chris@0: struct fixedfloat const *power; Chris@0: Chris@0: frac = exp % 4; /* assumes sign(frac) == sign(exp) */ Chris@0: exp /= 4; Chris@0: Chris@0: power = &rq_table[value]; Chris@0: requantized = power->mantissa; Chris@0: exp += power->exponent; Chris@0: Chris@0: if (exp < 0) { Chris@0: if (-exp >= sizeof(mad_fixed_t) * CHAR_BIT) { Chris@0: /* underflow */ Chris@0: requantized = 0; Chris@0: } Chris@0: else { Chris@0: requantized += 1L << (-exp - 1); Chris@0: requantized >>= -exp; Chris@0: } Chris@0: } Chris@0: else { Chris@0: if (exp >= 5) { Chris@0: /* overflow */ Chris@0: # if defined(DEBUG) Chris@0: fprintf(stderr, "requantize overflow (%f * 2^%d)\n", Chris@0: mad_f_todouble(requantized), exp); Chris@0: # endif Chris@0: requantized = MAD_F_MAX; Chris@0: } Chris@0: else Chris@0: requantized <<= exp; Chris@0: } Chris@0: Chris@0: return frac ? mad_f_mul(requantized, root_table[3 + frac]) : requantized; Chris@0: } Chris@0: Chris@0: /* we must take care that sz >= bits and sz < sizeof(long) lest bits == 0 */ Chris@0: # define MASK(cache, sz, bits) \ Chris@0: (((cache) >> ((sz) - (bits))) & ((1 << (bits)) - 1)) Chris@0: # define MASK1BIT(cache, sz) \ Chris@0: ((cache) & (1 << ((sz) - 1))) Chris@0: Chris@0: /* Chris@0: * NAME: III_huffdecode() Chris@0: * DESCRIPTION: decode Huffman code words of one channel of one granule Chris@0: */ Chris@0: static Chris@0: enum mad_error III_huffdecode(struct mad_bitptr *ptr, mad_fixed_t xr[576], Chris@0: struct channel *channel, Chris@0: unsigned char const *sfbwidth, Chris@0: unsigned int part2_length) Chris@0: { Chris@0: signed int exponents[39], exp; Chris@0: signed int const *expptr; Chris@0: struct mad_bitptr peek; Chris@0: signed int bits_left, cachesz; Chris@0: register mad_fixed_t *xrptr; Chris@0: mad_fixed_t const *sfbound; Chris@0: register unsigned long bitcache; Chris@0: Chris@0: bits_left = (signed) channel->part2_3_length - (signed) part2_length; Chris@0: if (bits_left < 0) Chris@0: return MAD_ERROR_BADPART3LEN; Chris@0: Chris@0: III_exponents(channel, sfbwidth, exponents); Chris@0: Chris@0: peek = *ptr; Chris@0: mad_bit_skip(ptr, bits_left); Chris@0: Chris@0: /* align bit reads to byte boundaries */ Chris@0: cachesz = mad_bit_bitsleft(&peek); Chris@0: cachesz += ((32 - 1 - 24) + (24 - cachesz)) & ~7; Chris@0: Chris@0: bitcache = mad_bit_read(&peek, cachesz); Chris@0: bits_left -= cachesz; Chris@0: Chris@0: xrptr = &xr[0]; Chris@0: Chris@0: /* big_values */ Chris@0: { Chris@0: unsigned int region, rcount; Chris@0: struct hufftable const *entry; Chris@0: union huffpair const *table; Chris@0: unsigned int linbits, startbits, big_values, reqhits; Chris@0: mad_fixed_t reqcache[16]; Chris@0: Chris@0: sfbound = xrptr + *sfbwidth++; Chris@0: rcount = channel->region0_count + 1; Chris@0: Chris@0: entry = &mad_huff_pair_table[channel->table_select[region = 0]]; Chris@0: table = entry->table; Chris@0: linbits = entry->linbits; Chris@0: startbits = entry->startbits; Chris@0: Chris@0: if (table == 0) Chris@0: return MAD_ERROR_BADHUFFTABLE; Chris@0: Chris@0: expptr = &exponents[0]; Chris@0: exp = *expptr++; Chris@0: reqhits = 0; Chris@0: Chris@0: big_values = channel->big_values; Chris@0: Chris@0: while (big_values-- && cachesz + bits_left > 0) { Chris@0: union huffpair const *pair; Chris@0: unsigned int clumpsz, value; Chris@0: register mad_fixed_t requantized; Chris@0: Chris@0: if (xrptr == sfbound) { Chris@0: sfbound += *sfbwidth++; Chris@0: Chris@0: /* change table if region boundary */ Chris@0: Chris@0: if (--rcount == 0) { Chris@0: if (region == 0) Chris@0: rcount = channel->region1_count + 1; Chris@0: else Chris@0: rcount = 0; /* all remaining */ Chris@0: Chris@0: entry = &mad_huff_pair_table[channel->table_select[++region]]; Chris@0: table = entry->table; Chris@0: linbits = entry->linbits; Chris@0: startbits = entry->startbits; Chris@0: Chris@0: if (table == 0) Chris@0: return MAD_ERROR_BADHUFFTABLE; Chris@0: } Chris@0: Chris@0: if (exp != *expptr) { Chris@0: exp = *expptr; Chris@0: reqhits = 0; Chris@0: } Chris@0: Chris@0: ++expptr; Chris@0: } Chris@0: Chris@0: if (cachesz < 21) { Chris@0: unsigned int bits; Chris@0: Chris@0: bits = ((32 - 1 - 21) + (21 - cachesz)) & ~7; Chris@0: bitcache = (bitcache << bits) | mad_bit_read(&peek, bits); Chris@0: cachesz += bits; Chris@0: bits_left -= bits; Chris@0: } Chris@0: Chris@0: /* hcod (0..19) */ Chris@0: Chris@0: clumpsz = startbits; Chris@0: pair = &table[MASK(bitcache, cachesz, clumpsz)]; Chris@0: Chris@0: while (!pair->final) { Chris@0: cachesz -= clumpsz; Chris@0: Chris@0: clumpsz = pair->ptr.bits; Chris@0: pair = &table[pair->ptr.offset + MASK(bitcache, cachesz, clumpsz)]; Chris@0: } Chris@0: Chris@0: cachesz -= pair->value.hlen; Chris@0: Chris@0: if (linbits) { Chris@0: /* x (0..14) */ Chris@0: Chris@0: value = pair->value.x; Chris@0: Chris@0: switch (value) { Chris@0: case 0: Chris@0: xrptr[0] = 0; Chris@0: break; Chris@0: Chris@0: case 15: Chris@0: if (cachesz < linbits + 2) { Chris@0: bitcache = (bitcache << 16) | mad_bit_read(&peek, 16); Chris@0: cachesz += 16; Chris@0: bits_left -= 16; Chris@0: } Chris@0: Chris@0: value += MASK(bitcache, cachesz, linbits); Chris@0: cachesz -= linbits; Chris@0: Chris@0: requantized = III_requantize(value, exp); Chris@0: goto x_final; Chris@0: Chris@0: default: Chris@0: if (reqhits & (1 << value)) Chris@0: requantized = reqcache[value]; Chris@0: else { Chris@0: reqhits |= (1 << value); Chris@0: requantized = reqcache[value] = III_requantize(value, exp); Chris@0: } Chris@0: Chris@0: x_final: Chris@0: xrptr[0] = MASK1BIT(bitcache, cachesz--) ? Chris@0: -requantized : requantized; Chris@0: } Chris@0: Chris@0: /* y (0..14) */ Chris@0: Chris@0: value = pair->value.y; Chris@0: Chris@0: switch (value) { Chris@0: case 0: Chris@0: xrptr[1] = 0; Chris@0: break; Chris@0: Chris@0: case 15: Chris@0: if (cachesz < linbits + 1) { Chris@0: bitcache = (bitcache << 16) | mad_bit_read(&peek, 16); Chris@0: cachesz += 16; Chris@0: bits_left -= 16; Chris@0: } Chris@0: Chris@0: value += MASK(bitcache, cachesz, linbits); Chris@0: cachesz -= linbits; Chris@0: Chris@0: requantized = III_requantize(value, exp); Chris@0: goto y_final; Chris@0: Chris@0: default: Chris@0: if (reqhits & (1 << value)) Chris@0: requantized = reqcache[value]; Chris@0: else { Chris@0: reqhits |= (1 << value); Chris@0: requantized = reqcache[value] = III_requantize(value, exp); Chris@0: } Chris@0: Chris@0: y_final: Chris@0: xrptr[1] = MASK1BIT(bitcache, cachesz--) ? Chris@0: -requantized : requantized; Chris@0: } Chris@0: } Chris@0: else { Chris@0: /* x (0..1) */ Chris@0: Chris@0: value = pair->value.x; Chris@0: Chris@0: if (value == 0) Chris@0: xrptr[0] = 0; Chris@0: else { Chris@0: if (reqhits & (1 << value)) Chris@0: requantized = reqcache[value]; Chris@0: else { Chris@0: reqhits |= (1 << value); Chris@0: requantized = reqcache[value] = III_requantize(value, exp); Chris@0: } Chris@0: Chris@0: xrptr[0] = MASK1BIT(bitcache, cachesz--) ? Chris@0: -requantized : requantized; Chris@0: } Chris@0: Chris@0: /* y (0..1) */ Chris@0: Chris@0: value = pair->value.y; Chris@0: Chris@0: if (value == 0) Chris@0: xrptr[1] = 0; Chris@0: else { Chris@0: if (reqhits & (1 << value)) Chris@0: requantized = reqcache[value]; Chris@0: else { Chris@0: reqhits |= (1 << value); Chris@0: requantized = reqcache[value] = III_requantize(value, exp); Chris@0: } Chris@0: Chris@0: xrptr[1] = MASK1BIT(bitcache, cachesz--) ? Chris@0: -requantized : requantized; Chris@0: } Chris@0: } Chris@0: Chris@0: xrptr += 2; Chris@0: } Chris@0: } Chris@0: Chris@0: if (cachesz + bits_left < 0) Chris@0: return MAD_ERROR_BADHUFFDATA; /* big_values overrun */ Chris@0: Chris@0: /* count1 */ Chris@0: { Chris@0: union huffquad const *table; Chris@0: register mad_fixed_t requantized; Chris@0: Chris@0: table = mad_huff_quad_table[channel->flags & count1table_select]; Chris@0: Chris@0: requantized = III_requantize(1, exp); Chris@0: Chris@0: while (cachesz + bits_left > 0 && xrptr <= &xr[572]) { Chris@0: union huffquad const *quad; Chris@0: Chris@0: /* hcod (1..6) */ Chris@0: Chris@0: if (cachesz < 10) { Chris@0: bitcache = (bitcache << 16) | mad_bit_read(&peek, 16); Chris@0: cachesz += 16; Chris@0: bits_left -= 16; Chris@0: } Chris@0: Chris@0: quad = &table[MASK(bitcache, cachesz, 4)]; Chris@0: Chris@0: /* quad tables guaranteed to have at most one extra lookup */ Chris@0: if (!quad->final) { Chris@0: cachesz -= 4; Chris@0: Chris@0: quad = &table[quad->ptr.offset + Chris@0: MASK(bitcache, cachesz, quad->ptr.bits)]; Chris@0: } Chris@0: Chris@0: cachesz -= quad->value.hlen; Chris@0: Chris@0: if (xrptr == sfbound) { Chris@0: sfbound += *sfbwidth++; Chris@0: Chris@0: if (exp != *expptr) { Chris@0: exp = *expptr; Chris@0: requantized = III_requantize(1, exp); Chris@0: } Chris@0: Chris@0: ++expptr; Chris@0: } Chris@0: Chris@0: /* v (0..1) */ Chris@0: Chris@0: xrptr[0] = quad->value.v ? Chris@0: (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0; Chris@0: Chris@0: /* w (0..1) */ Chris@0: Chris@0: xrptr[1] = quad->value.w ? Chris@0: (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0; Chris@0: Chris@0: xrptr += 2; Chris@0: Chris@0: if (xrptr == sfbound) { Chris@0: sfbound += *sfbwidth++; Chris@0: Chris@0: if (exp != *expptr) { Chris@0: exp = *expptr; Chris@0: requantized = III_requantize(1, exp); Chris@0: } Chris@0: Chris@0: ++expptr; Chris@0: } Chris@0: Chris@0: /* x (0..1) */ Chris@0: Chris@0: xrptr[0] = quad->value.x ? Chris@0: (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0; Chris@0: Chris@0: /* y (0..1) */ Chris@0: Chris@0: xrptr[1] = quad->value.y ? Chris@0: (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0; Chris@0: Chris@0: xrptr += 2; Chris@0: } Chris@0: Chris@0: if (cachesz + bits_left < 0) { Chris@0: # if 0 && defined(DEBUG) Chris@0: fprintf(stderr, "huffman count1 overrun (%d bits)\n", Chris@0: -(cachesz + bits_left)); Chris@0: # endif Chris@0: Chris@0: /* technically the bitstream is misformatted, but apparently Chris@0: some encoders are just a bit sloppy with stuffing bits */ Chris@0: Chris@0: xrptr -= 4; Chris@0: } Chris@0: } Chris@0: Chris@0: assert(-bits_left <= MAD_BUFFER_GUARD * CHAR_BIT); Chris@0: Chris@0: # if 0 && defined(DEBUG) Chris@0: if (bits_left < 0) Chris@0: fprintf(stderr, "read %d bits too many\n", -bits_left); Chris@0: else if (cachesz + bits_left > 0) Chris@0: fprintf(stderr, "%d stuffing bits\n", cachesz + bits_left); Chris@0: # endif Chris@0: Chris@0: /* rzero */ Chris@0: while (xrptr < &xr[576]) { Chris@0: xrptr[0] = 0; Chris@0: xrptr[1] = 0; Chris@0: Chris@0: xrptr += 2; Chris@0: } Chris@0: Chris@0: return MAD_ERROR_NONE; Chris@0: } Chris@0: Chris@0: # undef MASK Chris@0: # undef MASK1BIT Chris@0: Chris@0: /* Chris@0: * NAME: III_reorder() Chris@0: * DESCRIPTION: reorder frequency lines of a short block into subband order Chris@0: */ Chris@0: static Chris@0: void III_reorder(mad_fixed_t xr[576], struct channel const *channel, Chris@0: unsigned char const sfbwidth[39]) Chris@0: { Chris@0: mad_fixed_t tmp[32][3][6]; Chris@0: unsigned int sb, l, f, w, sbw[3], sw[3]; Chris@0: Chris@0: /* this is probably wrong for 8000 Hz mixed blocks */ Chris@0: Chris@0: sb = 0; Chris@0: if (channel->flags & mixed_block_flag) { Chris@0: sb = 2; Chris@0: Chris@0: l = 0; Chris@0: while (l < 36) Chris@0: l += *sfbwidth++; Chris@0: } Chris@0: Chris@0: for (w = 0; w < 3; ++w) { Chris@0: sbw[w] = sb; Chris@0: sw[w] = 0; Chris@0: } Chris@0: Chris@0: f = *sfbwidth++; Chris@0: w = 0; Chris@0: Chris@0: for (l = 18 * sb; l < 576; ++l) { Chris@0: if (f-- == 0) { Chris@0: f = *sfbwidth++ - 1; Chris@0: w = (w + 1) % 3; Chris@0: } Chris@0: Chris@0: tmp[sbw[w]][w][sw[w]++] = xr[l]; Chris@0: Chris@0: if (sw[w] == 6) { Chris@0: sw[w] = 0; Chris@0: ++sbw[w]; Chris@0: } Chris@0: } Chris@0: Chris@0: memcpy(&xr[18 * sb], &tmp[sb], (576 - 18 * sb) * sizeof(mad_fixed_t)); Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: III_stereo() Chris@0: * DESCRIPTION: perform joint stereo processing on a granule Chris@0: */ Chris@0: static Chris@0: enum mad_error III_stereo(mad_fixed_t xr[2][576], Chris@0: struct granule const *granule, Chris@0: struct mad_header *header, Chris@0: unsigned char const *sfbwidth) Chris@0: { Chris@0: short modes[39]; Chris@0: unsigned int sfbi, l, n, i; Chris@0: Chris@0: if (granule->ch[0].block_type != Chris@0: granule->ch[1].block_type || Chris@0: (granule->ch[0].flags & mixed_block_flag) != Chris@0: (granule->ch[1].flags & mixed_block_flag)) Chris@0: return MAD_ERROR_BADSTEREO; Chris@0: Chris@0: for (i = 0; i < 39; ++i) Chris@0: modes[i] = header->mode_extension; Chris@0: Chris@0: /* intensity stereo */ Chris@0: Chris@0: if (header->mode_extension & I_STEREO) { Chris@0: struct channel const *right_ch = &granule->ch[1]; Chris@0: mad_fixed_t const *right_xr = xr[1]; Chris@0: unsigned int is_pos; Chris@0: Chris@0: header->flags |= MAD_FLAG_I_STEREO; Chris@0: Chris@0: /* first determine which scalefactor bands are to be processed */ Chris@0: Chris@0: if (right_ch->block_type == 2) { Chris@0: unsigned int lower, start, max, bound[3], w; Chris@0: Chris@0: lower = start = max = bound[0] = bound[1] = bound[2] = 0; Chris@0: Chris@0: sfbi = l = 0; Chris@0: Chris@0: if (right_ch->flags & mixed_block_flag) { Chris@0: while (l < 36) { Chris@0: n = sfbwidth[sfbi++]; Chris@0: Chris@0: for (i = 0; i < n; ++i) { Chris@0: if (right_xr[i]) { Chris@0: lower = sfbi; Chris@0: break; Chris@0: } Chris@0: } Chris@0: Chris@0: right_xr += n; Chris@0: l += n; Chris@0: } Chris@0: Chris@0: start = sfbi; Chris@0: } Chris@0: Chris@0: w = 0; Chris@0: while (l < 576) { Chris@0: n = sfbwidth[sfbi++]; Chris@0: Chris@0: for (i = 0; i < n; ++i) { Chris@0: if (right_xr[i]) { Chris@0: max = bound[w] = sfbi; Chris@0: break; Chris@0: } Chris@0: } Chris@0: Chris@0: right_xr += n; Chris@0: l += n; Chris@0: w = (w + 1) % 3; Chris@0: } Chris@0: Chris@0: if (max) Chris@0: lower = start; Chris@0: Chris@0: /* long blocks */ Chris@0: Chris@0: for (i = 0; i < lower; ++i) Chris@0: modes[i] = header->mode_extension & ~I_STEREO; Chris@0: Chris@0: /* short blocks */ Chris@0: Chris@0: w = 0; Chris@0: for (i = start; i < max; ++i) { Chris@0: if (i < bound[w]) Chris@0: modes[i] = header->mode_extension & ~I_STEREO; Chris@0: Chris@0: w = (w + 1) % 3; Chris@0: } Chris@0: } Chris@0: else { /* right_ch->block_type != 2 */ Chris@0: unsigned int bound; Chris@0: Chris@0: bound = 0; Chris@0: for (sfbi = l = 0; l < 576; l += n) { Chris@0: n = sfbwidth[sfbi++]; Chris@0: Chris@0: for (i = 0; i < n; ++i) { Chris@0: if (right_xr[i]) { Chris@0: bound = sfbi; Chris@0: break; Chris@0: } Chris@0: } Chris@0: Chris@0: right_xr += n; Chris@0: } Chris@0: Chris@0: for (i = 0; i < bound; ++i) Chris@0: modes[i] = header->mode_extension & ~I_STEREO; Chris@0: } Chris@0: Chris@0: /* now do the actual processing */ Chris@0: Chris@0: if (header->flags & MAD_FLAG_LSF_EXT) { Chris@0: unsigned char const *illegal_pos = granule[1].ch[1].scalefac; Chris@0: mad_fixed_t const *lsf_scale; Chris@0: Chris@0: /* intensity_scale */ Chris@0: lsf_scale = is_lsf_table[right_ch->scalefac_compress & 0x1]; Chris@0: Chris@0: for (sfbi = l = 0; l < 576; ++sfbi, l += n) { Chris@0: n = sfbwidth[sfbi]; Chris@0: Chris@0: if (!(modes[sfbi] & I_STEREO)) Chris@0: continue; Chris@0: Chris@0: if (illegal_pos[sfbi]) { Chris@0: modes[sfbi] &= ~I_STEREO; Chris@0: continue; Chris@0: } Chris@0: Chris@0: is_pos = right_ch->scalefac[sfbi]; Chris@0: Chris@0: for (i = 0; i < n; ++i) { Chris@0: register mad_fixed_t left; Chris@0: Chris@0: left = xr[0][l + i]; Chris@0: Chris@0: if (is_pos == 0) Chris@0: xr[1][l + i] = left; Chris@0: else { Chris@0: register mad_fixed_t opposite; Chris@0: Chris@0: opposite = mad_f_mul(left, lsf_scale[(is_pos - 1) / 2]); Chris@0: Chris@0: if (is_pos & 1) { Chris@0: xr[0][l + i] = opposite; Chris@0: xr[1][l + i] = left; Chris@0: } Chris@0: else Chris@0: xr[1][l + i] = opposite; Chris@0: } Chris@0: } Chris@0: } Chris@0: } Chris@0: else { /* !(header->flags & MAD_FLAG_LSF_EXT) */ Chris@0: for (sfbi = l = 0; l < 576; ++sfbi, l += n) { Chris@0: n = sfbwidth[sfbi]; Chris@0: Chris@0: if (!(modes[sfbi] & I_STEREO)) Chris@0: continue; Chris@0: Chris@0: is_pos = right_ch->scalefac[sfbi]; Chris@0: Chris@0: if (is_pos >= 7) { /* illegal intensity position */ Chris@0: modes[sfbi] &= ~I_STEREO; Chris@0: continue; Chris@0: } Chris@0: Chris@0: for (i = 0; i < n; ++i) { Chris@0: register mad_fixed_t left; Chris@0: Chris@0: left = xr[0][l + i]; Chris@0: Chris@0: xr[0][l + i] = mad_f_mul(left, is_table[ is_pos]); Chris@0: xr[1][l + i] = mad_f_mul(left, is_table[6 - is_pos]); Chris@0: } Chris@0: } Chris@0: } Chris@0: } Chris@0: Chris@0: /* middle/side stereo */ Chris@0: Chris@0: if (header->mode_extension & MS_STEREO) { Chris@0: register mad_fixed_t invsqrt2; Chris@0: Chris@0: header->flags |= MAD_FLAG_MS_STEREO; Chris@0: Chris@0: invsqrt2 = root_table[3 + -2]; Chris@0: Chris@0: for (sfbi = l = 0; l < 576; ++sfbi, l += n) { Chris@0: n = sfbwidth[sfbi]; Chris@0: Chris@0: if (modes[sfbi] != MS_STEREO) Chris@0: continue; Chris@0: Chris@0: for (i = 0; i < n; ++i) { Chris@0: register mad_fixed_t m, s; Chris@0: Chris@0: m = xr[0][l + i]; Chris@0: s = xr[1][l + i]; Chris@0: Chris@0: xr[0][l + i] = mad_f_mul(m + s, invsqrt2); /* l = (m + s) / sqrt(2) */ Chris@0: xr[1][l + i] = mad_f_mul(m - s, invsqrt2); /* r = (m - s) / sqrt(2) */ Chris@0: } Chris@0: } Chris@0: } Chris@0: Chris@0: return MAD_ERROR_NONE; Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: III_aliasreduce() Chris@0: * DESCRIPTION: perform frequency line alias reduction Chris@0: */ Chris@0: static Chris@0: void III_aliasreduce(mad_fixed_t xr[576], int lines) Chris@0: { Chris@0: mad_fixed_t const *bound; Chris@0: int i; Chris@0: Chris@0: bound = &xr[lines]; Chris@0: for (xr += 18; xr < bound; xr += 18) { Chris@0: for (i = 0; i < 8; ++i) { Chris@0: register mad_fixed_t a, b; Chris@0: register mad_fixed64hi_t hi; Chris@0: register mad_fixed64lo_t lo; Chris@0: Chris@0: a = xr[-1 - i]; Chris@0: b = xr[ i]; Chris@0: Chris@0: # if defined(ASO_ZEROCHECK) Chris@0: if (a | b) { Chris@0: # endif Chris@0: MAD_F_ML0(hi, lo, a, cs[i]); Chris@0: MAD_F_MLA(hi, lo, -b, ca[i]); Chris@0: Chris@0: xr[-1 - i] = MAD_F_MLZ(hi, lo); Chris@0: Chris@0: MAD_F_ML0(hi, lo, b, cs[i]); Chris@0: MAD_F_MLA(hi, lo, a, ca[i]); Chris@0: Chris@0: xr[ i] = MAD_F_MLZ(hi, lo); Chris@0: # if defined(ASO_ZEROCHECK) Chris@0: } Chris@0: # endif Chris@0: } Chris@0: } Chris@0: } Chris@0: Chris@0: # if defined(ASO_IMDCT) Chris@0: void III_imdct_l(mad_fixed_t const [18], mad_fixed_t [36], unsigned int); Chris@0: # else Chris@0: # if 1 Chris@0: static Chris@0: void fastsdct(mad_fixed_t const x[9], mad_fixed_t y[18]) Chris@0: { Chris@0: mad_fixed_t a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12; Chris@0: mad_fixed_t a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25; Chris@0: mad_fixed_t m0, m1, m2, m3, m4, m5, m6, m7; Chris@0: Chris@0: enum { Chris@0: c0 = MAD_F(0x1f838b8d), /* 2 * cos( 1 * PI / 18) */ Chris@0: c1 = MAD_F(0x1bb67ae8), /* 2 * cos( 3 * PI / 18) */ Chris@0: c2 = MAD_F(0x18836fa3), /* 2 * cos( 4 * PI / 18) */ Chris@0: c3 = MAD_F(0x1491b752), /* 2 * cos( 5 * PI / 18) */ Chris@0: c4 = MAD_F(0x0af1d43a), /* 2 * cos( 7 * PI / 18) */ Chris@0: c5 = MAD_F(0x058e86a0), /* 2 * cos( 8 * PI / 18) */ Chris@0: c6 = -MAD_F(0x1e11f642) /* 2 * cos(16 * PI / 18) */ Chris@0: }; Chris@0: Chris@0: a0 = x[3] + x[5]; Chris@0: a1 = x[3] - x[5]; Chris@0: a2 = x[6] + x[2]; Chris@0: a3 = x[6] - x[2]; Chris@0: a4 = x[1] + x[7]; Chris@0: a5 = x[1] - x[7]; Chris@0: a6 = x[8] + x[0]; Chris@0: a7 = x[8] - x[0]; Chris@0: Chris@0: a8 = a0 + a2; Chris@0: a9 = a0 - a2; Chris@0: a10 = a0 - a6; Chris@0: a11 = a2 - a6; Chris@0: a12 = a8 + a6; Chris@0: a13 = a1 - a3; Chris@0: a14 = a13 + a7; Chris@0: a15 = a3 + a7; Chris@0: a16 = a1 - a7; Chris@0: a17 = a1 + a3; Chris@0: Chris@0: m0 = mad_f_mul(a17, -c3); Chris@0: m1 = mad_f_mul(a16, -c0); Chris@0: m2 = mad_f_mul(a15, -c4); Chris@0: m3 = mad_f_mul(a14, -c1); Chris@0: m4 = mad_f_mul(a5, -c1); Chris@0: m5 = mad_f_mul(a11, -c6); Chris@0: m6 = mad_f_mul(a10, -c5); Chris@0: m7 = mad_f_mul(a9, -c2); Chris@0: Chris@0: a18 = x[4] + a4; Chris@0: a19 = 2 * x[4] - a4; Chris@0: a20 = a19 + m5; Chris@0: a21 = a19 - m5; Chris@0: a22 = a19 + m6; Chris@0: a23 = m4 + m2; Chris@0: a24 = m4 - m2; Chris@0: a25 = m4 + m1; Chris@0: Chris@0: /* output to every other slot for convenience */ Chris@0: Chris@0: y[ 0] = a18 + a12; Chris@0: y[ 2] = m0 - a25; Chris@0: y[ 4] = m7 - a20; Chris@0: y[ 6] = m3; Chris@0: y[ 8] = a21 - m6; Chris@0: y[10] = a24 - m1; Chris@0: y[12] = a12 - 2 * a18; Chris@0: y[14] = a23 + m0; Chris@0: y[16] = a22 + m7; Chris@0: } Chris@0: Chris@0: static inline Chris@0: void sdctII(mad_fixed_t const x[18], mad_fixed_t X[18]) Chris@0: { Chris@0: mad_fixed_t tmp[9]; Chris@0: int i; Chris@0: Chris@0: /* scale[i] = 2 * cos(PI * (2 * i + 1) / (2 * 18)) */ Chris@0: static mad_fixed_t const scale[9] = { Chris@0: MAD_F(0x1fe0d3b4), MAD_F(0x1ee8dd47), MAD_F(0x1d007930), Chris@0: MAD_F(0x1a367e59), MAD_F(0x16a09e66), MAD_F(0x125abcf8), Chris@0: MAD_F(0x0d8616bc), MAD_F(0x08483ee1), MAD_F(0x02c9fad7) Chris@0: }; Chris@0: Chris@0: /* divide the 18-point SDCT-II into two 9-point SDCT-IIs */ Chris@0: Chris@0: /* even input butterfly */ Chris@0: Chris@0: for (i = 0; i < 9; i += 3) { Chris@0: tmp[i + 0] = x[i + 0] + x[18 - (i + 0) - 1]; Chris@0: tmp[i + 1] = x[i + 1] + x[18 - (i + 1) - 1]; Chris@0: tmp[i + 2] = x[i + 2] + x[18 - (i + 2) - 1]; Chris@0: } Chris@0: Chris@0: fastsdct(tmp, &X[0]); Chris@0: Chris@0: /* odd input butterfly and scaling */ Chris@0: Chris@0: for (i = 0; i < 9; i += 3) { Chris@0: tmp[i + 0] = mad_f_mul(x[i + 0] - x[18 - (i + 0) - 1], scale[i + 0]); Chris@0: tmp[i + 1] = mad_f_mul(x[i + 1] - x[18 - (i + 1) - 1], scale[i + 1]); Chris@0: tmp[i + 2] = mad_f_mul(x[i + 2] - x[18 - (i + 2) - 1], scale[i + 2]); Chris@0: } Chris@0: Chris@0: fastsdct(tmp, &X[1]); Chris@0: Chris@0: /* output accumulation */ Chris@0: Chris@0: for (i = 3; i < 18; i += 8) { Chris@0: X[i + 0] -= X[(i + 0) - 2]; Chris@0: X[i + 2] -= X[(i + 2) - 2]; Chris@0: X[i + 4] -= X[(i + 4) - 2]; Chris@0: X[i + 6] -= X[(i + 6) - 2]; Chris@0: } Chris@0: } Chris@0: Chris@0: static inline Chris@0: void dctIV(mad_fixed_t const y[18], mad_fixed_t X[18]) Chris@0: { Chris@0: mad_fixed_t tmp[18]; Chris@0: int i; Chris@0: Chris@0: /* scale[i] = 2 * cos(PI * (2 * i + 1) / (4 * 18)) */ Chris@0: static mad_fixed_t const scale[18] = { Chris@0: MAD_F(0x1ff833fa), MAD_F(0x1fb9ea93), MAD_F(0x1f3dd120), Chris@0: MAD_F(0x1e84d969), MAD_F(0x1d906bcf), MAD_F(0x1c62648b), Chris@0: MAD_F(0x1afd100f), MAD_F(0x1963268b), MAD_F(0x1797c6a4), Chris@0: MAD_F(0x159e6f5b), MAD_F(0x137af940), MAD_F(0x11318ef3), Chris@0: MAD_F(0x0ec6a507), MAD_F(0x0c3ef153), MAD_F(0x099f61c5), Chris@0: MAD_F(0x06ed12c5), MAD_F(0x042d4544), MAD_F(0x0165547c) Chris@0: }; Chris@0: Chris@0: /* scaling */ Chris@0: Chris@0: for (i = 0; i < 18; i += 3) { Chris@0: tmp[i + 0] = mad_f_mul(y[i + 0], scale[i + 0]); Chris@0: tmp[i + 1] = mad_f_mul(y[i + 1], scale[i + 1]); Chris@0: tmp[i + 2] = mad_f_mul(y[i + 2], scale[i + 2]); Chris@0: } Chris@0: Chris@0: /* SDCT-II */ Chris@0: Chris@0: sdctII(tmp, X); Chris@0: Chris@0: /* scale reduction and output accumulation */ Chris@0: Chris@0: X[0] /= 2; Chris@0: for (i = 1; i < 17; i += 4) { Chris@0: X[i + 0] = X[i + 0] / 2 - X[(i + 0) - 1]; Chris@0: X[i + 1] = X[i + 1] / 2 - X[(i + 1) - 1]; Chris@0: X[i + 2] = X[i + 2] / 2 - X[(i + 2) - 1]; Chris@0: X[i + 3] = X[i + 3] / 2 - X[(i + 3) - 1]; Chris@0: } Chris@0: X[17] = X[17] / 2 - X[16]; Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: imdct36 Chris@0: * DESCRIPTION: perform X[18]->x[36] IMDCT using Szu-Wei Lee's fast algorithm Chris@0: */ Chris@0: static inline Chris@0: void imdct36(mad_fixed_t const x[18], mad_fixed_t y[36]) Chris@0: { Chris@0: mad_fixed_t tmp[18]; Chris@0: int i; Chris@0: Chris@0: /* DCT-IV */ Chris@0: Chris@0: dctIV(x, tmp); Chris@0: Chris@0: /* convert 18-point DCT-IV to 36-point IMDCT */ Chris@0: Chris@0: for (i = 0; i < 9; i += 3) { Chris@0: y[i + 0] = tmp[9 + (i + 0)]; Chris@0: y[i + 1] = tmp[9 + (i + 1)]; Chris@0: y[i + 2] = tmp[9 + (i + 2)]; Chris@0: } Chris@0: for (i = 9; i < 27; i += 3) { Chris@0: y[i + 0] = -tmp[36 - (9 + (i + 0)) - 1]; Chris@0: y[i + 1] = -tmp[36 - (9 + (i + 1)) - 1]; Chris@0: y[i + 2] = -tmp[36 - (9 + (i + 2)) - 1]; Chris@0: } Chris@0: for (i = 27; i < 36; i += 3) { Chris@0: y[i + 0] = -tmp[(i + 0) - 27]; Chris@0: y[i + 1] = -tmp[(i + 1) - 27]; Chris@0: y[i + 2] = -tmp[(i + 2) - 27]; Chris@0: } Chris@0: } Chris@0: # else Chris@0: /* Chris@0: * NAME: imdct36 Chris@0: * DESCRIPTION: perform X[18]->x[36] IMDCT Chris@0: */ Chris@0: static inline Chris@0: void imdct36(mad_fixed_t const X[18], mad_fixed_t x[36]) Chris@0: { Chris@0: mad_fixed_t t0, t1, t2, t3, t4, t5, t6, t7; Chris@0: mad_fixed_t t8, t9, t10, t11, t12, t13, t14, t15; Chris@0: register mad_fixed64hi_t hi; Chris@0: register mad_fixed64lo_t lo; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[4], MAD_F(0x0ec835e8)); Chris@0: MAD_F_MLA(hi, lo, X[13], MAD_F(0x061f78aa)); Chris@0: Chris@0: t6 = MAD_F_MLZ(hi, lo); Chris@0: Chris@0: MAD_F_MLA(hi, lo, (t14 = X[1] - X[10]), -MAD_F(0x061f78aa)); Chris@0: MAD_F_MLA(hi, lo, (t15 = X[7] + X[16]), -MAD_F(0x0ec835e8)); Chris@0: Chris@0: t0 = MAD_F_MLZ(hi, lo); Chris@0: Chris@0: MAD_F_MLA(hi, lo, (t8 = X[0] - X[11] - X[12]), MAD_F(0x0216a2a2)); Chris@0: MAD_F_MLA(hi, lo, (t9 = X[2] - X[9] - X[14]), MAD_F(0x09bd7ca0)); Chris@0: MAD_F_MLA(hi, lo, (t10 = X[3] - X[8] - X[15]), -MAD_F(0x0cb19346)); Chris@0: MAD_F_MLA(hi, lo, (t11 = X[5] - X[6] - X[17]), -MAD_F(0x0fdcf549)); Chris@0: Chris@0: x[7] = MAD_F_MLZ(hi, lo); Chris@0: x[10] = -x[7]; Chris@0: Chris@0: MAD_F_ML0(hi, lo, t8, -MAD_F(0x0cb19346)); Chris@0: MAD_F_MLA(hi, lo, t9, MAD_F(0x0fdcf549)); Chris@0: MAD_F_MLA(hi, lo, t10, MAD_F(0x0216a2a2)); Chris@0: MAD_F_MLA(hi, lo, t11, -MAD_F(0x09bd7ca0)); Chris@0: Chris@0: x[19] = x[34] = MAD_F_MLZ(hi, lo) - t0; Chris@0: Chris@0: t12 = X[0] - X[3] + X[8] - X[11] - X[12] + X[15]; Chris@0: t13 = X[2] + X[5] - X[6] - X[9] - X[14] - X[17]; Chris@0: Chris@0: MAD_F_ML0(hi, lo, t12, -MAD_F(0x0ec835e8)); Chris@0: MAD_F_MLA(hi, lo, t13, MAD_F(0x061f78aa)); Chris@0: Chris@0: x[22] = x[31] = MAD_F_MLZ(hi, lo) + t0; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[1], -MAD_F(0x09bd7ca0)); Chris@0: MAD_F_MLA(hi, lo, X[7], MAD_F(0x0216a2a2)); Chris@0: MAD_F_MLA(hi, lo, X[10], -MAD_F(0x0fdcf549)); Chris@0: MAD_F_MLA(hi, lo, X[16], MAD_F(0x0cb19346)); Chris@0: Chris@0: t1 = MAD_F_MLZ(hi, lo) + t6; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[2], MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[6], MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[9], MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[11], MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[14], MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[15], -MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0f9ee890)); Chris@0: Chris@0: x[6] = MAD_F_MLZ(hi, lo) + t1; Chris@0: x[11] = -x[6]; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[2], -MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[3], MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[5], MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[6], MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[8], -MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[12], -MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[14], MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[15], MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[17], MAD_F(0x04cfb0e2)); Chris@0: Chris@0: x[23] = x[30] = MAD_F_MLZ(hi, lo) + t1; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[2], MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[3], -MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[5], MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[6], MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[9], -MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[11], MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[14], MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[15], MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0acf37ad)); Chris@0: Chris@0: x[18] = x[35] = MAD_F_MLZ(hi, lo) - t1; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[4], MAD_F(0x061f78aa)); Chris@0: MAD_F_MLA(hi, lo, X[13], -MAD_F(0x0ec835e8)); Chris@0: Chris@0: t7 = MAD_F_MLZ(hi, lo); Chris@0: Chris@0: MAD_F_MLA(hi, lo, X[1], -MAD_F(0x0cb19346)); Chris@0: MAD_F_MLA(hi, lo, X[7], MAD_F(0x0fdcf549)); Chris@0: MAD_F_MLA(hi, lo, X[10], MAD_F(0x0216a2a2)); Chris@0: MAD_F_MLA(hi, lo, X[16], -MAD_F(0x09bd7ca0)); Chris@0: Chris@0: t2 = MAD_F_MLZ(hi, lo); Chris@0: Chris@0: MAD_F_MLA(hi, lo, X[0], MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[2], MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[5], MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[9], MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[12], MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[14], MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[15], MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[17], MAD_F(0x0f426cb5)); Chris@0: Chris@0: x[5] = MAD_F_MLZ(hi, lo); Chris@0: x[12] = -x[5]; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[2], -MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[3], MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[6], -MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[8], MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[11], MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[12], -MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[14], MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[15], MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0bcbe352)); Chris@0: Chris@0: x[0] = MAD_F_MLZ(hi, lo) + t2; Chris@0: x[17] = -x[0]; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[2], -MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[3], -MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[5], MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[6], MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[8], MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[9], MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[11], -MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[14], -MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[17], -MAD_F(0x03768962)); Chris@0: Chris@0: x[24] = x[29] = MAD_F_MLZ(hi, lo) + t2; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[1], -MAD_F(0x0216a2a2)); Chris@0: MAD_F_MLA(hi, lo, X[7], -MAD_F(0x09bd7ca0)); Chris@0: MAD_F_MLA(hi, lo, X[10], MAD_F(0x0cb19346)); Chris@0: MAD_F_MLA(hi, lo, X[16], MAD_F(0x0fdcf549)); Chris@0: Chris@0: t3 = MAD_F_MLZ(hi, lo) + t7; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[2], MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[3], -MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[5], -MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[6], MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[8], MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[12], MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[14], MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0ffc19fd)); Chris@0: Chris@0: x[8] = MAD_F_MLZ(hi, lo) + t3; Chris@0: x[9] = -x[8]; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[2], MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[3], MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[8], MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[9], MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[11], -MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[14], -MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[15], MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[17], MAD_F(0x07635284)); Chris@0: Chris@0: x[21] = x[32] = MAD_F_MLZ(hi, lo) + t3; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[2], MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[3], MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[6], -MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[8], MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[9], MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[12], MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[14], MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[15], -MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0898c779)); Chris@0: Chris@0: x[20] = x[33] = MAD_F_MLZ(hi, lo) - t3; Chris@0: Chris@0: MAD_F_ML0(hi, lo, t14, -MAD_F(0x0ec835e8)); Chris@0: MAD_F_MLA(hi, lo, t15, MAD_F(0x061f78aa)); Chris@0: Chris@0: t4 = MAD_F_MLZ(hi, lo) - t7; Chris@0: Chris@0: MAD_F_ML0(hi, lo, t12, MAD_F(0x061f78aa)); Chris@0: MAD_F_MLA(hi, lo, t13, MAD_F(0x0ec835e8)); Chris@0: Chris@0: x[4] = MAD_F_MLZ(hi, lo) + t4; Chris@0: x[13] = -x[4]; Chris@0: Chris@0: MAD_F_ML0(hi, lo, t8, MAD_F(0x09bd7ca0)); Chris@0: MAD_F_MLA(hi, lo, t9, -MAD_F(0x0216a2a2)); Chris@0: MAD_F_MLA(hi, lo, t10, MAD_F(0x0fdcf549)); Chris@0: MAD_F_MLA(hi, lo, t11, -MAD_F(0x0cb19346)); Chris@0: Chris@0: x[1] = MAD_F_MLZ(hi, lo) + t4; Chris@0: x[16] = -x[1]; Chris@0: Chris@0: MAD_F_ML0(hi, lo, t8, -MAD_F(0x0fdcf549)); Chris@0: MAD_F_MLA(hi, lo, t9, -MAD_F(0x0cb19346)); Chris@0: MAD_F_MLA(hi, lo, t10, -MAD_F(0x09bd7ca0)); Chris@0: MAD_F_MLA(hi, lo, t11, -MAD_F(0x0216a2a2)); Chris@0: Chris@0: x[25] = x[28] = MAD_F_MLZ(hi, lo) + t4; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[1], -MAD_F(0x0fdcf549)); Chris@0: MAD_F_MLA(hi, lo, X[7], -MAD_F(0x0cb19346)); Chris@0: MAD_F_MLA(hi, lo, X[10], -MAD_F(0x09bd7ca0)); Chris@0: MAD_F_MLA(hi, lo, X[16], -MAD_F(0x0216a2a2)); Chris@0: Chris@0: t5 = MAD_F_MLZ(hi, lo) - t6; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[2], MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[3], MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[5], MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[6], MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[8], -MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[9], MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[11], -MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[12], MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[14], -MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[15], MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0d7e8807)); Chris@0: Chris@0: x[2] = MAD_F_MLZ(hi, lo) + t5; Chris@0: x[15] = -x[2]; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[2], MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[3], MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[5], MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[6], -MAD_F(0x00b2aa3e)); Chris@0: MAD_F_MLA(hi, lo, X[8], MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[9], -MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[11], MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[14], MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[17], MAD_F(0x0e313245)); Chris@0: Chris@0: x[3] = MAD_F_MLZ(hi, lo) + t5; Chris@0: x[14] = -x[3]; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0ffc19fd)); Chris@0: MAD_F_MLA(hi, lo, X[2], -MAD_F(0x0f9ee890)); Chris@0: MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0f426cb5)); Chris@0: MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0e313245)); Chris@0: MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0d7e8807)); Chris@0: MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0bcbe352)); Chris@0: MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0acf37ad)); Chris@0: MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0898c779)); Chris@0: MAD_F_MLA(hi, lo, X[12], -MAD_F(0x07635284)); Chris@0: MAD_F_MLA(hi, lo, X[14], -MAD_F(0x04cfb0e2)); Chris@0: MAD_F_MLA(hi, lo, X[15], -MAD_F(0x03768962)); Chris@0: MAD_F_MLA(hi, lo, X[17], -MAD_F(0x00b2aa3e)); Chris@0: Chris@0: x[26] = x[27] = MAD_F_MLZ(hi, lo) + t5; Chris@0: } Chris@0: # endif Chris@0: Chris@0: /* Chris@0: * NAME: III_imdct_l() Chris@0: * DESCRIPTION: perform IMDCT and windowing for long blocks Chris@0: */ Chris@0: static Chris@0: void III_imdct_l(mad_fixed_t const X[18], mad_fixed_t z[36], Chris@0: unsigned int block_type) Chris@0: { Chris@0: unsigned int i; Chris@0: Chris@0: /* IMDCT */ Chris@0: Chris@0: imdct36(X, z); Chris@0: Chris@0: /* windowing */ Chris@0: Chris@0: switch (block_type) { Chris@0: case 0: /* normal window */ Chris@0: # if defined(ASO_INTERLEAVE1) Chris@0: { Chris@0: register mad_fixed_t tmp1, tmp2; Chris@0: Chris@0: tmp1 = window_l[0]; Chris@0: tmp2 = window_l[1]; Chris@0: Chris@0: for (i = 0; i < 34; i += 2) { Chris@0: z[i + 0] = mad_f_mul(z[i + 0], tmp1); Chris@0: tmp1 = window_l[i + 2]; Chris@0: z[i + 1] = mad_f_mul(z[i + 1], tmp2); Chris@0: tmp2 = window_l[i + 3]; Chris@0: } Chris@0: Chris@0: z[34] = mad_f_mul(z[34], tmp1); Chris@0: z[35] = mad_f_mul(z[35], tmp2); Chris@0: } Chris@0: # elif defined(ASO_INTERLEAVE2) Chris@0: { Chris@0: register mad_fixed_t tmp1, tmp2; Chris@0: Chris@0: tmp1 = z[0]; Chris@0: tmp2 = window_l[0]; Chris@0: Chris@0: for (i = 0; i < 35; ++i) { Chris@0: z[i] = mad_f_mul(tmp1, tmp2); Chris@0: tmp1 = z[i + 1]; Chris@0: tmp2 = window_l[i + 1]; Chris@0: } Chris@0: Chris@0: z[35] = mad_f_mul(tmp1, tmp2); Chris@0: } Chris@0: # elif 1 Chris@0: for (i = 0; i < 36; i += 4) { Chris@0: z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]); Chris@0: z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]); Chris@0: z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]); Chris@0: z[i + 3] = mad_f_mul(z[i + 3], window_l[i + 3]); Chris@0: } Chris@0: # else Chris@0: for (i = 0; i < 36; ++i) z[i] = mad_f_mul(z[i], window_l[i]); Chris@0: # endif Chris@0: break; Chris@0: Chris@0: case 1: /* start block */ Chris@0: for (i = 0; i < 18; i += 3) { Chris@0: z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]); Chris@0: z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]); Chris@0: z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]); Chris@0: } Chris@0: /* (i = 18; i < 24; ++i) z[i] unchanged */ Chris@0: for (i = 24; i < 30; ++i) z[i] = mad_f_mul(z[i], window_s[i - 18]); Chris@0: for (i = 30; i < 36; ++i) z[i] = 0; Chris@0: break; Chris@0: Chris@0: case 3: /* stop block */ Chris@0: for (i = 0; i < 6; ++i) z[i] = 0; Chris@0: for (i = 6; i < 12; ++i) z[i] = mad_f_mul(z[i], window_s[i - 6]); Chris@0: /* (i = 12; i < 18; ++i) z[i] unchanged */ Chris@0: for (i = 18; i < 36; i += 3) { Chris@0: z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]); Chris@0: z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]); Chris@0: z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]); Chris@0: } Chris@0: break; Chris@0: } Chris@0: } Chris@0: # endif /* ASO_IMDCT */ Chris@0: Chris@0: /* Chris@0: * NAME: III_imdct_s() Chris@0: * DESCRIPTION: perform IMDCT and windowing for short blocks Chris@0: */ Chris@0: static Chris@0: void III_imdct_s(mad_fixed_t const X[18], mad_fixed_t z[36]) Chris@0: { Chris@0: mad_fixed_t y[36], *yptr; Chris@0: mad_fixed_t const *wptr; Chris@0: int w, i; Chris@0: register mad_fixed64hi_t hi; Chris@0: register mad_fixed64lo_t lo; Chris@0: Chris@0: /* IMDCT */ Chris@0: Chris@0: yptr = &y[0]; Chris@0: Chris@0: for (w = 0; w < 3; ++w) { Chris@0: register mad_fixed_t const (*s)[6]; Chris@0: Chris@0: s = imdct_s; Chris@0: Chris@0: for (i = 0; i < 3; ++i) { Chris@0: MAD_F_ML0(hi, lo, X[0], (*s)[0]); Chris@0: MAD_F_MLA(hi, lo, X[1], (*s)[1]); Chris@0: MAD_F_MLA(hi, lo, X[2], (*s)[2]); Chris@0: MAD_F_MLA(hi, lo, X[3], (*s)[3]); Chris@0: MAD_F_MLA(hi, lo, X[4], (*s)[4]); Chris@0: MAD_F_MLA(hi, lo, X[5], (*s)[5]); Chris@0: Chris@0: yptr[i + 0] = MAD_F_MLZ(hi, lo); Chris@0: yptr[5 - i] = -yptr[i + 0]; Chris@0: Chris@0: ++s; Chris@0: Chris@0: MAD_F_ML0(hi, lo, X[0], (*s)[0]); Chris@0: MAD_F_MLA(hi, lo, X[1], (*s)[1]); Chris@0: MAD_F_MLA(hi, lo, X[2], (*s)[2]); Chris@0: MAD_F_MLA(hi, lo, X[3], (*s)[3]); Chris@0: MAD_F_MLA(hi, lo, X[4], (*s)[4]); Chris@0: MAD_F_MLA(hi, lo, X[5], (*s)[5]); Chris@0: Chris@0: yptr[ i + 6] = MAD_F_MLZ(hi, lo); Chris@0: yptr[11 - i] = yptr[i + 6]; Chris@0: Chris@0: ++s; Chris@0: } Chris@0: Chris@0: yptr += 12; Chris@0: X += 6; Chris@0: } Chris@0: Chris@0: /* windowing, overlapping and concatenation */ Chris@0: Chris@0: yptr = &y[0]; Chris@0: wptr = &window_s[0]; Chris@0: Chris@0: for (i = 0; i < 6; ++i) { Chris@0: z[i + 0] = 0; Chris@0: z[i + 6] = mad_f_mul(yptr[ 0 + 0], wptr[0]); Chris@0: Chris@0: MAD_F_ML0(hi, lo, yptr[ 0 + 6], wptr[6]); Chris@0: MAD_F_MLA(hi, lo, yptr[12 + 0], wptr[0]); Chris@0: Chris@0: z[i + 12] = MAD_F_MLZ(hi, lo); Chris@0: Chris@0: MAD_F_ML0(hi, lo, yptr[12 + 6], wptr[6]); Chris@0: MAD_F_MLA(hi, lo, yptr[24 + 0], wptr[0]); Chris@0: Chris@0: z[i + 18] = MAD_F_MLZ(hi, lo); Chris@0: Chris@0: z[i + 24] = mad_f_mul(yptr[24 + 6], wptr[6]); Chris@0: z[i + 30] = 0; Chris@0: Chris@0: ++yptr; Chris@0: ++wptr; Chris@0: } Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: III_overlap() Chris@0: * DESCRIPTION: perform overlap-add of windowed IMDCT outputs Chris@0: */ Chris@0: static Chris@0: void III_overlap(mad_fixed_t const output[36], mad_fixed_t overlap[18], Chris@0: mad_fixed_t sample[18][32], unsigned int sb) Chris@0: { Chris@0: unsigned int i; Chris@0: Chris@0: # if defined(ASO_INTERLEAVE2) Chris@0: { Chris@0: register mad_fixed_t tmp1, tmp2; Chris@0: Chris@0: tmp1 = overlap[0]; Chris@0: tmp2 = overlap[1]; Chris@0: Chris@0: for (i = 0; i < 16; i += 2) { Chris@0: sample[i + 0][sb] = output[i + 0 + 0] + tmp1; Chris@0: overlap[i + 0] = output[i + 0 + 18]; Chris@0: tmp1 = overlap[i + 2]; Chris@0: Chris@0: sample[i + 1][sb] = output[i + 1 + 0] + tmp2; Chris@0: overlap[i + 1] = output[i + 1 + 18]; Chris@0: tmp2 = overlap[i + 3]; Chris@0: } Chris@0: Chris@0: sample[16][sb] = output[16 + 0] + tmp1; Chris@0: overlap[16] = output[16 + 18]; Chris@0: sample[17][sb] = output[17 + 0] + tmp2; Chris@0: overlap[17] = output[17 + 18]; Chris@0: } Chris@0: # elif 0 Chris@0: for (i = 0; i < 18; i += 2) { Chris@0: sample[i + 0][sb] = output[i + 0 + 0] + overlap[i + 0]; Chris@0: overlap[i + 0] = output[i + 0 + 18]; Chris@0: Chris@0: sample[i + 1][sb] = output[i + 1 + 0] + overlap[i + 1]; Chris@0: overlap[i + 1] = output[i + 1 + 18]; Chris@0: } Chris@0: # else Chris@0: for (i = 0; i < 18; ++i) { Chris@0: sample[i][sb] = output[i + 0] + overlap[i]; Chris@0: overlap[i] = output[i + 18]; Chris@0: } Chris@0: # endif Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: III_overlap_z() Chris@0: * DESCRIPTION: perform "overlap-add" of zero IMDCT outputs Chris@0: */ Chris@0: static inline Chris@0: void III_overlap_z(mad_fixed_t overlap[18], Chris@0: mad_fixed_t sample[18][32], unsigned int sb) Chris@0: { Chris@0: unsigned int i; Chris@0: Chris@0: # if defined(ASO_INTERLEAVE2) Chris@0: { Chris@0: register mad_fixed_t tmp1, tmp2; Chris@0: Chris@0: tmp1 = overlap[0]; Chris@0: tmp2 = overlap[1]; Chris@0: Chris@0: for (i = 0; i < 16; i += 2) { Chris@0: sample[i + 0][sb] = tmp1; Chris@0: overlap[i + 0] = 0; Chris@0: tmp1 = overlap[i + 2]; Chris@0: Chris@0: sample[i + 1][sb] = tmp2; Chris@0: overlap[i + 1] = 0; Chris@0: tmp2 = overlap[i + 3]; Chris@0: } Chris@0: Chris@0: sample[16][sb] = tmp1; Chris@0: overlap[16] = 0; Chris@0: sample[17][sb] = tmp2; Chris@0: overlap[17] = 0; Chris@0: } Chris@0: # else Chris@0: for (i = 0; i < 18; ++i) { Chris@0: sample[i][sb] = overlap[i]; Chris@0: overlap[i] = 0; Chris@0: } Chris@0: # endif Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: III_freqinver() Chris@0: * DESCRIPTION: perform subband frequency inversion for odd sample lines Chris@0: */ Chris@0: static Chris@0: void III_freqinver(mad_fixed_t sample[18][32], unsigned int sb) Chris@0: { Chris@0: unsigned int i; Chris@0: Chris@0: # if 1 || defined(ASO_INTERLEAVE1) || defined(ASO_INTERLEAVE2) Chris@0: { Chris@0: register mad_fixed_t tmp1, tmp2; Chris@0: Chris@0: tmp1 = sample[1][sb]; Chris@0: tmp2 = sample[3][sb]; Chris@0: Chris@0: for (i = 1; i < 13; i += 4) { Chris@0: sample[i + 0][sb] = -tmp1; Chris@0: tmp1 = sample[i + 4][sb]; Chris@0: sample[i + 2][sb] = -tmp2; Chris@0: tmp2 = sample[i + 6][sb]; Chris@0: } Chris@0: Chris@0: sample[13][sb] = -tmp1; Chris@0: tmp1 = sample[17][sb]; Chris@0: sample[15][sb] = -tmp2; Chris@0: sample[17][sb] = -tmp1; Chris@0: } Chris@0: # else Chris@0: for (i = 1; i < 18; i += 2) Chris@0: sample[i][sb] = -sample[i][sb]; Chris@0: # endif Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: III_decode() Chris@0: * DESCRIPTION: decode frame main_data Chris@0: */ Chris@0: static Chris@0: enum mad_error III_decode(struct mad_bitptr *ptr, struct mad_frame *frame, Chris@0: struct sideinfo *si, unsigned int nch) Chris@0: { Chris@0: struct mad_header *header = &frame->header; Chris@0: unsigned int sfreqi, ngr, gr; Chris@0: Chris@0: { Chris@0: unsigned int sfreq; Chris@0: Chris@0: sfreq = header->samplerate; Chris@0: if (header->flags & MAD_FLAG_MPEG_2_5_EXT) Chris@0: sfreq *= 2; Chris@0: Chris@0: /* 48000 => 0, 44100 => 1, 32000 => 2, Chris@0: 24000 => 3, 22050 => 4, 16000 => 5 */ Chris@0: sfreqi = ((sfreq >> 7) & 0x000f) + Chris@0: ((sfreq >> 15) & 0x0001) - 8; Chris@0: Chris@0: if (header->flags & MAD_FLAG_MPEG_2_5_EXT) Chris@0: sfreqi += 3; Chris@0: } Chris@0: Chris@0: /* scalefactors, Huffman decoding, requantization */ Chris@0: Chris@0: ngr = (header->flags & MAD_FLAG_LSF_EXT) ? 1 : 2; Chris@0: Chris@0: for (gr = 0; gr < ngr; ++gr) { Chris@0: struct granule *granule = &si->gr[gr]; Chris@0: unsigned char const *sfbwidth[2]; Chris@0: mad_fixed_t xr[2][576]; Chris@0: unsigned int ch; Chris@0: enum mad_error error; Chris@0: Chris@0: for (ch = 0; ch < nch; ++ch) { Chris@0: struct channel *channel = &granule->ch[ch]; Chris@0: unsigned int part2_length; Chris@0: Chris@0: sfbwidth[ch] = sfbwidth_table[sfreqi].l; Chris@0: if (channel->block_type == 2) { Chris@0: sfbwidth[ch] = (channel->flags & mixed_block_flag) ? Chris@0: sfbwidth_table[sfreqi].m : sfbwidth_table[sfreqi].s; Chris@0: } Chris@0: Chris@0: if (header->flags & MAD_FLAG_LSF_EXT) { Chris@0: part2_length = III_scalefactors_lsf(ptr, channel, Chris@0: ch == 0 ? 0 : &si->gr[1].ch[1], Chris@0: header->mode_extension); Chris@0: } Chris@0: else { Chris@0: part2_length = III_scalefactors(ptr, channel, &si->gr[0].ch[ch], Chris@0: gr == 0 ? 0 : si->scfsi[ch]); Chris@0: } Chris@0: Chris@0: error = III_huffdecode(ptr, xr[ch], channel, sfbwidth[ch], part2_length); Chris@0: if (error) Chris@0: return error; Chris@0: } Chris@0: Chris@0: /* joint stereo processing */ Chris@0: Chris@0: if (header->mode == MAD_MODE_JOINT_STEREO && header->mode_extension) { Chris@0: error = III_stereo(xr, granule, header, sfbwidth[0]); Chris@0: if (error) Chris@0: return error; Chris@0: } Chris@0: Chris@0: /* reordering, alias reduction, IMDCT, overlap-add, frequency inversion */ Chris@0: Chris@0: for (ch = 0; ch < nch; ++ch) { Chris@0: struct channel const *channel = &granule->ch[ch]; Chris@0: mad_fixed_t (*sample)[32] = &frame->sbsample[ch][18 * gr]; Chris@0: unsigned int sb, l, i, sblimit; Chris@0: mad_fixed_t output[36]; Chris@0: Chris@0: if (channel->block_type == 2) { Chris@0: III_reorder(xr[ch], channel, sfbwidth[ch]); Chris@0: Chris@0: # if !defined(OPT_STRICT) Chris@0: /* Chris@0: * According to ISO/IEC 11172-3, "Alias reduction is not applied for Chris@0: * granules with block_type == 2 (short block)." However, other Chris@0: * sources suggest alias reduction should indeed be performed on the Chris@0: * lower two subbands of mixed blocks. Most other implementations do Chris@0: * this, so by default we will too. Chris@0: */ Chris@0: if (channel->flags & mixed_block_flag) Chris@0: III_aliasreduce(xr[ch], 36); Chris@0: # endif Chris@0: } Chris@0: else Chris@0: III_aliasreduce(xr[ch], 576); Chris@0: Chris@0: l = 0; Chris@0: Chris@0: /* subbands 0-1 */ Chris@0: Chris@0: if (channel->block_type != 2 || (channel->flags & mixed_block_flag)) { Chris@0: unsigned int block_type; Chris@0: Chris@0: block_type = channel->block_type; Chris@0: if (channel->flags & mixed_block_flag) Chris@0: block_type = 0; Chris@0: Chris@0: /* long blocks */ Chris@0: for (sb = 0; sb < 2; ++sb, l += 18) { Chris@0: III_imdct_l(&xr[ch][l], output, block_type); Chris@0: III_overlap(output, (*frame->overlap)[ch][sb], sample, sb); Chris@0: } Chris@0: } Chris@0: else { Chris@0: /* short blocks */ Chris@0: for (sb = 0; sb < 2; ++sb, l += 18) { Chris@0: III_imdct_s(&xr[ch][l], output); Chris@0: III_overlap(output, (*frame->overlap)[ch][sb], sample, sb); Chris@0: } Chris@0: } Chris@0: Chris@0: III_freqinver(sample, 1); Chris@0: Chris@0: /* (nonzero) subbands 2-31 */ Chris@0: Chris@0: i = 576; Chris@0: while (i > 36 && xr[ch][i - 1] == 0) Chris@0: --i; Chris@0: Chris@0: sblimit = 32 - (576 - i) / 18; Chris@0: Chris@0: if (channel->block_type != 2) { Chris@0: /* long blocks */ Chris@0: for (sb = 2; sb < sblimit; ++sb, l += 18) { Chris@0: III_imdct_l(&xr[ch][l], output, channel->block_type); Chris@0: III_overlap(output, (*frame->overlap)[ch][sb], sample, sb); Chris@0: Chris@0: if (sb & 1) Chris@0: III_freqinver(sample, sb); Chris@0: } Chris@0: } Chris@0: else { Chris@0: /* short blocks */ Chris@0: for (sb = 2; sb < sblimit; ++sb, l += 18) { Chris@0: III_imdct_s(&xr[ch][l], output); Chris@0: III_overlap(output, (*frame->overlap)[ch][sb], sample, sb); Chris@0: Chris@0: if (sb & 1) Chris@0: III_freqinver(sample, sb); Chris@0: } Chris@0: } Chris@0: Chris@0: /* remaining (zero) subbands */ Chris@0: Chris@0: for (sb = sblimit; sb < 32; ++sb) { Chris@0: III_overlap_z((*frame->overlap)[ch][sb], sample, sb); Chris@0: Chris@0: if (sb & 1) Chris@0: III_freqinver(sample, sb); Chris@0: } Chris@0: } Chris@0: } Chris@0: Chris@0: return MAD_ERROR_NONE; Chris@0: } Chris@0: Chris@0: /* Chris@0: * NAME: layer->III() Chris@0: * DESCRIPTION: decode a single Layer III frame Chris@0: */ Chris@0: int mad_layer_III(struct mad_stream *stream, struct mad_frame *frame) Chris@0: { Chris@0: struct mad_header *header = &frame->header; Chris@0: unsigned int nch, priv_bitlen, next_md_begin = 0; Chris@0: unsigned int si_len, data_bitlen, md_len; Chris@0: unsigned int frame_space, frame_used, frame_free; Chris@0: struct mad_bitptr ptr; Chris@0: struct sideinfo si; Chris@0: enum mad_error error; Chris@0: int result = 0; Chris@0: Chris@0: /* allocate Layer III dynamic structures */ Chris@0: Chris@0: if (stream->main_data == 0) { Chris@0: stream->main_data = malloc(MAD_BUFFER_MDLEN); Chris@0: if (stream->main_data == 0) { Chris@0: stream->error = MAD_ERROR_NOMEM; Chris@0: return -1; Chris@0: } Chris@0: } Chris@0: Chris@0: if (frame->overlap == 0) { Chris@0: frame->overlap = calloc(2 * 32 * 18, sizeof(mad_fixed_t)); Chris@0: if (frame->overlap == 0) { Chris@0: stream->error = MAD_ERROR_NOMEM; Chris@0: return -1; Chris@0: } Chris@0: } Chris@0: Chris@0: nch = MAD_NCHANNELS(header); Chris@0: si_len = (header->flags & MAD_FLAG_LSF_EXT) ? Chris@0: (nch == 1 ? 9 : 17) : (nch == 1 ? 17 : 32); Chris@0: Chris@0: /* check frame sanity */ Chris@0: Chris@0: if (stream->next_frame - mad_bit_nextbyte(&stream->ptr) < Chris@0: (signed int) si_len) { Chris@0: stream->error = MAD_ERROR_BADFRAMELEN; Chris@0: stream->md_len = 0; Chris@0: return -1; Chris@0: } Chris@0: Chris@0: /* check CRC word */ Chris@0: Chris@0: if (header->flags & MAD_FLAG_PROTECTION) { Chris@0: header->crc_check = Chris@0: mad_bit_crc(stream->ptr, si_len * CHAR_BIT, header->crc_check); Chris@0: Chris@0: if (header->crc_check != header->crc_target && Chris@0: !(frame->options & MAD_OPTION_IGNORECRC)) { Chris@0: stream->error = MAD_ERROR_BADCRC; Chris@0: result = -1; Chris@0: } Chris@0: } Chris@0: Chris@0: /* decode frame side information */ Chris@0: Chris@0: error = III_sideinfo(&stream->ptr, nch, header->flags & MAD_FLAG_LSF_EXT, Chris@0: &si, &data_bitlen, &priv_bitlen); Chris@0: if (error && result == 0) { Chris@0: stream->error = error; Chris@0: result = -1; Chris@0: } Chris@0: Chris@0: header->flags |= priv_bitlen; Chris@0: header->private_bits |= si.private_bits; Chris@0: Chris@0: /* find main_data of next frame */ Chris@0: Chris@0: { Chris@0: struct mad_bitptr peek; Chris@0: unsigned long header; Chris@0: Chris@0: mad_bit_init(&peek, stream->next_frame); Chris@0: Chris@0: header = mad_bit_read(&peek, 32); Chris@0: if ((header & 0xffe60000L) /* syncword | layer */ == 0xffe20000L) { Chris@0: if (!(header & 0x00010000L)) /* protection_bit */ Chris@0: mad_bit_skip(&peek, 16); /* crc_check */ Chris@0: Chris@0: next_md_begin = Chris@0: mad_bit_read(&peek, (header & 0x00080000L) /* ID */ ? 9 : 8); Chris@0: } Chris@0: Chris@0: mad_bit_finish(&peek); Chris@0: } Chris@0: Chris@0: /* find main_data of this frame */ Chris@0: Chris@0: frame_space = stream->next_frame - mad_bit_nextbyte(&stream->ptr); Chris@0: Chris@0: if (next_md_begin > si.main_data_begin + frame_space) Chris@0: next_md_begin = 0; Chris@0: Chris@0: md_len = si.main_data_begin + frame_space - next_md_begin; Chris@0: Chris@0: frame_used = 0; Chris@0: Chris@0: if (si.main_data_begin == 0) { Chris@0: ptr = stream->ptr; Chris@0: stream->md_len = 0; Chris@0: Chris@0: frame_used = md_len; Chris@0: } Chris@0: else { Chris@0: if (si.main_data_begin > stream->md_len) { Chris@0: if (result == 0) { Chris@0: stream->error = MAD_ERROR_BADDATAPTR; Chris@0: result = -1; Chris@0: } Chris@0: } Chris@0: else { Chris@0: mad_bit_init(&ptr, Chris@0: *stream->main_data + stream->md_len - si.main_data_begin); Chris@0: Chris@0: if (md_len > si.main_data_begin) { Chris@0: assert(stream->md_len + md_len - Chris@0: si.main_data_begin <= MAD_BUFFER_MDLEN); Chris@0: Chris@0: memcpy(*stream->main_data + stream->md_len, Chris@0: mad_bit_nextbyte(&stream->ptr), Chris@0: frame_used = md_len - si.main_data_begin); Chris@0: stream->md_len += frame_used; Chris@0: } Chris@0: } Chris@0: } Chris@0: Chris@0: frame_free = frame_space - frame_used; Chris@0: Chris@0: /* decode main_data */ Chris@0: Chris@0: if (result == 0) { Chris@0: error = III_decode(&ptr, frame, &si, nch); Chris@0: if (error) { Chris@0: stream->error = error; Chris@0: result = -1; Chris@0: } Chris@0: Chris@0: /* designate ancillary bits */ Chris@0: Chris@0: stream->anc_ptr = ptr; Chris@0: stream->anc_bitlen = md_len * CHAR_BIT - data_bitlen; Chris@0: } Chris@0: Chris@0: # if 0 && defined(DEBUG) Chris@0: fprintf(stderr, Chris@0: "main_data_begin:%u, md_len:%u, frame_free:%u, " Chris@0: "data_bitlen:%u, anc_bitlen: %u\n", Chris@0: si.main_data_begin, md_len, frame_free, Chris@0: data_bitlen, stream->anc_bitlen); Chris@0: # endif Chris@0: Chris@0: /* preload main_data buffer with up to 511 bytes for next frame(s) */ Chris@0: Chris@0: if (frame_free >= next_md_begin) { Chris@0: memcpy(*stream->main_data, Chris@0: stream->next_frame - next_md_begin, next_md_begin); Chris@0: stream->md_len = next_md_begin; Chris@0: } Chris@0: else { Chris@0: if (md_len < si.main_data_begin) { Chris@0: unsigned int extra; Chris@0: Chris@0: extra = si.main_data_begin - md_len; Chris@0: if (extra + frame_free > next_md_begin) Chris@0: extra = next_md_begin - frame_free; Chris@0: Chris@0: if (extra < stream->md_len) { Chris@0: memmove(*stream->main_data, Chris@0: *stream->main_data + stream->md_len - extra, extra); Chris@0: stream->md_len = extra; Chris@0: } Chris@0: } Chris@0: else Chris@0: stream->md_len = 0; Chris@0: Chris@0: memcpy(*stream->main_data + stream->md_len, Chris@0: stream->next_frame - frame_free, frame_free); Chris@0: stream->md_len += frame_free; Chris@0: } Chris@0: Chris@0: return result; Chris@0: }