annotate src/fftw-3.3.3/reodft/reodft010e-r2hc.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 /* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some
Chris@10 23 pre/post-processing ala FFTPACK. */
Chris@10 24
Chris@10 25 #include "reodft.h"
Chris@10 26
Chris@10 27 typedef struct {
Chris@10 28 solver super;
Chris@10 29 } S;
Chris@10 30
Chris@10 31 typedef struct {
Chris@10 32 plan_rdft super;
Chris@10 33 plan *cld;
Chris@10 34 twid *td;
Chris@10 35 INT is, os;
Chris@10 36 INT n;
Chris@10 37 INT vl;
Chris@10 38 INT ivs, ovs;
Chris@10 39 rdft_kind kind;
Chris@10 40 } P;
Chris@10 41
Chris@10 42 /* A real-even-01 DFT operates logically on a size-4N array:
Chris@10 43 I 0 -r(I*) -I 0 r(I*),
Chris@10 44 where r denotes reversal and * denotes deletion of the 0th element.
Chris@10 45 To compute the transform of this, we imagine performing a radix-4
Chris@10 46 (real-input) DIF step, which turns the size-4N DFT into 4 size-N
Chris@10 47 (contiguous) DFTs, two of which are zero and two of which are
Chris@10 48 conjugates. The non-redundant size-N DFT has halfcomplex input, so
Chris@10 49 we can do it with a size-N hc2r transform. (In order to share
Chris@10 50 plans with the re10 (inverse) transform, however, we use the DHT
Chris@10 51 trick to re-express the hc2r problem as r2hc. This has little cost
Chris@10 52 since we are already pre- and post-processing the data in {i,n-i}
Chris@10 53 order.) Finally, we have to write out the data in the correct
Chris@10 54 order...the two size-N redundant (conjugate) hc2r DFTs correspond
Chris@10 55 to the even and odd outputs in O (i.e. the usual interleaved output
Chris@10 56 of DIF transforms); since this data has even symmetry, we only
Chris@10 57 write the first half of it.
Chris@10 58
Chris@10 59 The real-even-10 DFT is just the reverse of these steps, i.e. a
Chris@10 60 radix-4 DIT transform. There, however, we just use the r2hc
Chris@10 61 transform naturally without resorting to the DHT trick.
Chris@10 62
Chris@10 63 A real-odd-01 DFT is very similar, except that the input is
Chris@10 64 0 I (rI)* 0 -I -(rI)*. This format, however, can be transformed
Chris@10 65 into precisely the real-even-01 format above by sending I -> rI
Chris@10 66 and shifting the array by N. The former swap is just another
Chris@10 67 transformation on the input during preprocessing; the latter
Chris@10 68 multiplies the even/odd outputs by i/-i, which combines with
Chris@10 69 the factor of -i (to take the imaginary part) to simply flip
Chris@10 70 the sign of the odd outputs. Vice-versa for real-odd-10.
Chris@10 71
Chris@10 72 The FFTPACK source code was very helpful in working this out.
Chris@10 73 (They do unnecessary passes over the array, though.) The same
Chris@10 74 algorithm is also described in:
Chris@10 75
Chris@10 76 John Makhoul, "A fast cosine transform in one and two dimensions,"
Chris@10 77 IEEE Trans. on Acoust. Speech and Sig. Proc., ASSP-28 (1), 27--34 (1980).
Chris@10 78
Chris@10 79 Note that Numerical Recipes suggests a different algorithm that
Chris@10 80 requires more operations and uses trig. functions for both the pre-
Chris@10 81 and post-processing passes.
Chris@10 82 */
Chris@10 83
Chris@10 84 static void apply_re01(const plan *ego_, R *I, R *O)
Chris@10 85 {
Chris@10 86 const P *ego = (const P *) ego_;
Chris@10 87 INT is = ego->is, os = ego->os;
Chris@10 88 INT i, n = ego->n;
Chris@10 89 INT iv, vl = ego->vl;
Chris@10 90 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@10 91 R *W = ego->td->W;
Chris@10 92 R *buf;
Chris@10 93
Chris@10 94 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@10 95
Chris@10 96 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@10 97 buf[0] = I[0];
Chris@10 98 for (i = 1; i < n - i; ++i) {
Chris@10 99 E a, b, apb, amb, wa, wb;
Chris@10 100 a = I[is * i];
Chris@10 101 b = I[is * (n - i)];
Chris@10 102 apb = a + b;
Chris@10 103 amb = a - b;
Chris@10 104 wa = W[2*i];
Chris@10 105 wb = W[2*i + 1];
Chris@10 106 buf[i] = wa * amb + wb * apb;
Chris@10 107 buf[n - i] = wa * apb - wb * amb;
Chris@10 108 }
Chris@10 109 if (i == n - i) {
Chris@10 110 buf[i] = K(2.0) * I[is * i] * W[2*i];
Chris@10 111 }
Chris@10 112
Chris@10 113 {
Chris@10 114 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 115 cld->apply((plan *) cld, buf, buf);
Chris@10 116 }
Chris@10 117
Chris@10 118 O[0] = buf[0];
Chris@10 119 for (i = 1; i < n - i; ++i) {
Chris@10 120 E a, b;
Chris@10 121 INT k;
Chris@10 122 a = buf[i];
Chris@10 123 b = buf[n - i];
Chris@10 124 k = i + i;
Chris@10 125 O[os * (k - 1)] = a - b;
Chris@10 126 O[os * k] = a + b;
Chris@10 127 }
Chris@10 128 if (i == n - i) {
Chris@10 129 O[os * (n - 1)] = buf[i];
Chris@10 130 }
Chris@10 131 }
Chris@10 132
Chris@10 133 X(ifree)(buf);
Chris@10 134 }
Chris@10 135
Chris@10 136 /* ro01 is same as re01, but with i <-> n - 1 - i in the input and
Chris@10 137 the sign of the odd output elements flipped. */
Chris@10 138 static void apply_ro01(const plan *ego_, R *I, R *O)
Chris@10 139 {
Chris@10 140 const P *ego = (const P *) ego_;
Chris@10 141 INT is = ego->is, os = ego->os;
Chris@10 142 INT i, n = ego->n;
Chris@10 143 INT iv, vl = ego->vl;
Chris@10 144 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@10 145 R *W = ego->td->W;
Chris@10 146 R *buf;
Chris@10 147
Chris@10 148 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@10 149
Chris@10 150 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@10 151 buf[0] = I[is * (n - 1)];
Chris@10 152 for (i = 1; i < n - i; ++i) {
Chris@10 153 E a, b, apb, amb, wa, wb;
Chris@10 154 a = I[is * (n - 1 - i)];
Chris@10 155 b = I[is * (i - 1)];
Chris@10 156 apb = a + b;
Chris@10 157 amb = a - b;
Chris@10 158 wa = W[2*i];
Chris@10 159 wb = W[2*i+1];
Chris@10 160 buf[i] = wa * amb + wb * apb;
Chris@10 161 buf[n - i] = wa * apb - wb * amb;
Chris@10 162 }
Chris@10 163 if (i == n - i) {
Chris@10 164 buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i];
Chris@10 165 }
Chris@10 166
Chris@10 167 {
Chris@10 168 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 169 cld->apply((plan *) cld, buf, buf);
Chris@10 170 }
Chris@10 171
Chris@10 172 O[0] = buf[0];
Chris@10 173 for (i = 1; i < n - i; ++i) {
Chris@10 174 E a, b;
Chris@10 175 INT k;
Chris@10 176 a = buf[i];
Chris@10 177 b = buf[n - i];
Chris@10 178 k = i + i;
Chris@10 179 O[os * (k - 1)] = b - a;
Chris@10 180 O[os * k] = a + b;
Chris@10 181 }
Chris@10 182 if (i == n - i) {
Chris@10 183 O[os * (n - 1)] = -buf[i];
Chris@10 184 }
Chris@10 185 }
Chris@10 186
Chris@10 187 X(ifree)(buf);
Chris@10 188 }
Chris@10 189
Chris@10 190 static void apply_re10(const plan *ego_, R *I, R *O)
Chris@10 191 {
Chris@10 192 const P *ego = (const P *) ego_;
Chris@10 193 INT is = ego->is, os = ego->os;
Chris@10 194 INT i, n = ego->n;
Chris@10 195 INT iv, vl = ego->vl;
Chris@10 196 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@10 197 R *W = ego->td->W;
Chris@10 198 R *buf;
Chris@10 199
Chris@10 200 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@10 201
Chris@10 202 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@10 203 buf[0] = I[0];
Chris@10 204 for (i = 1; i < n - i; ++i) {
Chris@10 205 E u, v;
Chris@10 206 INT k = i + i;
Chris@10 207 u = I[is * (k - 1)];
Chris@10 208 v = I[is * k];
Chris@10 209 buf[n - i] = u;
Chris@10 210 buf[i] = v;
Chris@10 211 }
Chris@10 212 if (i == n - i) {
Chris@10 213 buf[i] = I[is * (n - 1)];
Chris@10 214 }
Chris@10 215
Chris@10 216 {
Chris@10 217 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 218 cld->apply((plan *) cld, buf, buf);
Chris@10 219 }
Chris@10 220
Chris@10 221 O[0] = K(2.0) * buf[0];
Chris@10 222 for (i = 1; i < n - i; ++i) {
Chris@10 223 E a, b, wa, wb;
Chris@10 224 a = K(2.0) * buf[i];
Chris@10 225 b = K(2.0) * buf[n - i];
Chris@10 226 wa = W[2*i];
Chris@10 227 wb = W[2*i + 1];
Chris@10 228 O[os * i] = wa * a + wb * b;
Chris@10 229 O[os * (n - i)] = wb * a - wa * b;
Chris@10 230 }
Chris@10 231 if (i == n - i) {
Chris@10 232 O[os * i] = K(2.0) * buf[i] * W[2*i];
Chris@10 233 }
Chris@10 234 }
Chris@10 235
Chris@10 236 X(ifree)(buf);
Chris@10 237 }
Chris@10 238
Chris@10 239 /* ro10 is same as re10, but with i <-> n - 1 - i in the output and
Chris@10 240 the sign of the odd input elements flipped. */
Chris@10 241 static void apply_ro10(const plan *ego_, R *I, R *O)
Chris@10 242 {
Chris@10 243 const P *ego = (const P *) ego_;
Chris@10 244 INT is = ego->is, os = ego->os;
Chris@10 245 INT i, n = ego->n;
Chris@10 246 INT iv, vl = ego->vl;
Chris@10 247 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@10 248 R *W = ego->td->W;
Chris@10 249 R *buf;
Chris@10 250
Chris@10 251 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@10 252
Chris@10 253 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@10 254 buf[0] = I[0];
Chris@10 255 for (i = 1; i < n - i; ++i) {
Chris@10 256 E u, v;
Chris@10 257 INT k = i + i;
Chris@10 258 u = -I[is * (k - 1)];
Chris@10 259 v = I[is * k];
Chris@10 260 buf[n - i] = u;
Chris@10 261 buf[i] = v;
Chris@10 262 }
Chris@10 263 if (i == n - i) {
Chris@10 264 buf[i] = -I[is * (n - 1)];
Chris@10 265 }
Chris@10 266
Chris@10 267 {
Chris@10 268 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 269 cld->apply((plan *) cld, buf, buf);
Chris@10 270 }
Chris@10 271
Chris@10 272 O[os * (n - 1)] = K(2.0) * buf[0];
Chris@10 273 for (i = 1; i < n - i; ++i) {
Chris@10 274 E a, b, wa, wb;
Chris@10 275 a = K(2.0) * buf[i];
Chris@10 276 b = K(2.0) * buf[n - i];
Chris@10 277 wa = W[2*i];
Chris@10 278 wb = W[2*i + 1];
Chris@10 279 O[os * (n - 1 - i)] = wa * a + wb * b;
Chris@10 280 O[os * (i - 1)] = wb * a - wa * b;
Chris@10 281 }
Chris@10 282 if (i == n - i) {
Chris@10 283 O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i];
Chris@10 284 }
Chris@10 285 }
Chris@10 286
Chris@10 287 X(ifree)(buf);
Chris@10 288 }
Chris@10 289
Chris@10 290 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 291 {
Chris@10 292 P *ego = (P *) ego_;
Chris@10 293 static const tw_instr reodft010e_tw[] = {
Chris@10 294 { TW_COS, 0, 1 },
Chris@10 295 { TW_SIN, 0, 1 },
Chris@10 296 { TW_NEXT, 1, 0 }
Chris@10 297 };
Chris@10 298
Chris@10 299 X(plan_awake)(ego->cld, wakefulness);
Chris@10 300
Chris@10 301 X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw,
Chris@10 302 4*ego->n, 1, ego->n/2+1);
Chris@10 303 }
Chris@10 304
Chris@10 305 static void destroy(plan *ego_)
Chris@10 306 {
Chris@10 307 P *ego = (P *) ego_;
Chris@10 308 X(plan_destroy_internal)(ego->cld);
Chris@10 309 }
Chris@10 310
Chris@10 311 static void print(const plan *ego_, printer *p)
Chris@10 312 {
Chris@10 313 const P *ego = (const P *) ego_;
Chris@10 314 p->print(p, "(%se-r2hc-%D%v%(%p%))",
Chris@10 315 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
Chris@10 316 }
Chris@10 317
Chris@10 318 static int applicable0(const solver *ego_, const problem *p_)
Chris@10 319 {
Chris@10 320 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 321 UNUSED(ego_);
Chris@10 322
Chris@10 323 return (1
Chris@10 324 && p->sz->rnk == 1
Chris@10 325 && p->vecsz->rnk <= 1
Chris@10 326 && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10
Chris@10 327 || p->kind[0] == RODFT01 || p->kind[0] == RODFT10)
Chris@10 328 );
Chris@10 329 }
Chris@10 330
Chris@10 331 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@10 332 {
Chris@10 333 return (!NO_SLOWP(plnr) && applicable0(ego, p));
Chris@10 334 }
Chris@10 335
Chris@10 336 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 337 {
Chris@10 338 P *pln;
Chris@10 339 const problem_rdft *p;
Chris@10 340 plan *cld;
Chris@10 341 R *buf;
Chris@10 342 INT n;
Chris@10 343 opcnt ops;
Chris@10 344
Chris@10 345 static const plan_adt padt = {
Chris@10 346 X(rdft_solve), awake, print, destroy
Chris@10 347 };
Chris@10 348
Chris@10 349 if (!applicable(ego_, p_, plnr))
Chris@10 350 return (plan *)0;
Chris@10 351
Chris@10 352 p = (const problem_rdft *) p_;
Chris@10 353
Chris@10 354 n = p->sz->dims[0].n;
Chris@10 355 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@10 356
Chris@10 357 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
Chris@10 358 X(mktensor_0d)(),
Chris@10 359 buf, buf, R2HC));
Chris@10 360 X(ifree)(buf);
Chris@10 361 if (!cld)
Chris@10 362 return (plan *)0;
Chris@10 363
Chris@10 364 switch (p->kind[0]) {
Chris@10 365 case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break;
Chris@10 366 case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break;
Chris@10 367 case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break;
Chris@10 368 case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break;
Chris@10 369 default: A(0); return (plan*)0;
Chris@10 370 }
Chris@10 371
Chris@10 372 pln->n = n;
Chris@10 373 pln->is = p->sz->dims[0].is;
Chris@10 374 pln->os = p->sz->dims[0].os;
Chris@10 375 pln->cld = cld;
Chris@10 376 pln->td = 0;
Chris@10 377 pln->kind = p->kind[0];
Chris@10 378
Chris@10 379 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@10 380
Chris@10 381 X(ops_zero)(&ops);
Chris@10 382 ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5;
Chris@10 383 if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) {
Chris@10 384 ops.add = (n-1)/2 * 6;
Chris@10 385 ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2;
Chris@10 386 }
Chris@10 387 else { /* 10 transforms */
Chris@10 388 ops.add = (n-1)/2 * 2;
Chris@10 389 ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2;
Chris@10 390 }
Chris@10 391
Chris@10 392 X(ops_zero)(&pln->super.super.ops);
Chris@10 393 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
Chris@10 394 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
Chris@10 395
Chris@10 396 return &(pln->super.super);
Chris@10 397 }
Chris@10 398
Chris@10 399 /* constructor */
Chris@10 400 static solver *mksolver(void)
Chris@10 401 {
Chris@10 402 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@10 403 S *slv = MKSOLVER(S, &sadt);
Chris@10 404 return &(slv->super);
Chris@10 405 }
Chris@10 406
Chris@10 407 void X(reodft010e_r2hc_register)(planner *p)
Chris@10 408 {
Chris@10 409 REGISTER_SOLVER(p, mksolver());
Chris@10 410 }