Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: /* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some Chris@10: pre/post-processing ala FFTPACK. */ Chris@10: Chris@10: #include "reodft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_rdft super; Chris@10: plan *cld; Chris@10: twid *td; Chris@10: INT is, os; Chris@10: INT n; Chris@10: INT vl; Chris@10: INT ivs, ovs; Chris@10: rdft_kind kind; Chris@10: } P; Chris@10: Chris@10: /* A real-even-01 DFT operates logically on a size-4N array: Chris@10: I 0 -r(I*) -I 0 r(I*), Chris@10: where r denotes reversal and * denotes deletion of the 0th element. Chris@10: To compute the transform of this, we imagine performing a radix-4 Chris@10: (real-input) DIF step, which turns the size-4N DFT into 4 size-N Chris@10: (contiguous) DFTs, two of which are zero and two of which are Chris@10: conjugates. The non-redundant size-N DFT has halfcomplex input, so Chris@10: we can do it with a size-N hc2r transform. (In order to share Chris@10: plans with the re10 (inverse) transform, however, we use the DHT Chris@10: trick to re-express the hc2r problem as r2hc. This has little cost Chris@10: since we are already pre- and post-processing the data in {i,n-i} Chris@10: order.) Finally, we have to write out the data in the correct Chris@10: order...the two size-N redundant (conjugate) hc2r DFTs correspond Chris@10: to the even and odd outputs in O (i.e. the usual interleaved output Chris@10: of DIF transforms); since this data has even symmetry, we only Chris@10: write the first half of it. Chris@10: Chris@10: The real-even-10 DFT is just the reverse of these steps, i.e. a Chris@10: radix-4 DIT transform. There, however, we just use the r2hc Chris@10: transform naturally without resorting to the DHT trick. Chris@10: Chris@10: A real-odd-01 DFT is very similar, except that the input is Chris@10: 0 I (rI)* 0 -I -(rI)*. This format, however, can be transformed Chris@10: into precisely the real-even-01 format above by sending I -> rI Chris@10: and shifting the array by N. The former swap is just another Chris@10: transformation on the input during preprocessing; the latter Chris@10: multiplies the even/odd outputs by i/-i, which combines with Chris@10: the factor of -i (to take the imaginary part) to simply flip Chris@10: the sign of the odd outputs. Vice-versa for real-odd-10. Chris@10: Chris@10: The FFTPACK source code was very helpful in working this out. Chris@10: (They do unnecessary passes over the array, though.) The same Chris@10: algorithm is also described in: Chris@10: Chris@10: John Makhoul, "A fast cosine transform in one and two dimensions," Chris@10: IEEE Trans. on Acoust. Speech and Sig. Proc., ASSP-28 (1), 27--34 (1980). Chris@10: Chris@10: Note that Numerical Recipes suggests a different algorithm that Chris@10: requires more operations and uses trig. functions for both the pre- Chris@10: and post-processing passes. Chris@10: */ Chris@10: Chris@10: static void apply_re01(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT is = ego->is, os = ego->os; Chris@10: INT i, n = ego->n; Chris@10: INT iv, vl = ego->vl; Chris@10: INT ivs = ego->ivs, ovs = ego->ovs; Chris@10: R *W = ego->td->W; Chris@10: R *buf; Chris@10: Chris@10: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@10: Chris@10: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@10: buf[0] = I[0]; Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E a, b, apb, amb, wa, wb; Chris@10: a = I[is * i]; Chris@10: b = I[is * (n - i)]; Chris@10: apb = a + b; Chris@10: amb = a - b; Chris@10: wa = W[2*i]; Chris@10: wb = W[2*i + 1]; Chris@10: buf[i] = wa * amb + wb * apb; Chris@10: buf[n - i] = wa * apb - wb * amb; Chris@10: } Chris@10: if (i == n - i) { Chris@10: buf[i] = K(2.0) * I[is * i] * W[2*i]; Chris@10: } Chris@10: Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, buf, buf); Chris@10: } Chris@10: Chris@10: O[0] = buf[0]; Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E a, b; Chris@10: INT k; Chris@10: a = buf[i]; Chris@10: b = buf[n - i]; Chris@10: k = i + i; Chris@10: O[os * (k - 1)] = a - b; Chris@10: O[os * k] = a + b; Chris@10: } Chris@10: if (i == n - i) { Chris@10: O[os * (n - 1)] = buf[i]; Chris@10: } Chris@10: } Chris@10: Chris@10: X(ifree)(buf); Chris@10: } Chris@10: Chris@10: /* ro01 is same as re01, but with i <-> n - 1 - i in the input and Chris@10: the sign of the odd output elements flipped. */ Chris@10: static void apply_ro01(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT is = ego->is, os = ego->os; Chris@10: INT i, n = ego->n; Chris@10: INT iv, vl = ego->vl; Chris@10: INT ivs = ego->ivs, ovs = ego->ovs; Chris@10: R *W = ego->td->W; Chris@10: R *buf; Chris@10: Chris@10: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@10: Chris@10: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@10: buf[0] = I[is * (n - 1)]; Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E a, b, apb, amb, wa, wb; Chris@10: a = I[is * (n - 1 - i)]; Chris@10: b = I[is * (i - 1)]; Chris@10: apb = a + b; Chris@10: amb = a - b; Chris@10: wa = W[2*i]; Chris@10: wb = W[2*i+1]; Chris@10: buf[i] = wa * amb + wb * apb; Chris@10: buf[n - i] = wa * apb - wb * amb; Chris@10: } Chris@10: if (i == n - i) { Chris@10: buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i]; Chris@10: } Chris@10: Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, buf, buf); Chris@10: } Chris@10: Chris@10: O[0] = buf[0]; Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E a, b; Chris@10: INT k; Chris@10: a = buf[i]; Chris@10: b = buf[n - i]; Chris@10: k = i + i; Chris@10: O[os * (k - 1)] = b - a; Chris@10: O[os * k] = a + b; Chris@10: } Chris@10: if (i == n - i) { Chris@10: O[os * (n - 1)] = -buf[i]; Chris@10: } Chris@10: } Chris@10: Chris@10: X(ifree)(buf); Chris@10: } Chris@10: Chris@10: static void apply_re10(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT is = ego->is, os = ego->os; Chris@10: INT i, n = ego->n; Chris@10: INT iv, vl = ego->vl; Chris@10: INT ivs = ego->ivs, ovs = ego->ovs; Chris@10: R *W = ego->td->W; Chris@10: R *buf; Chris@10: Chris@10: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@10: Chris@10: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@10: buf[0] = I[0]; Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E u, v; Chris@10: INT k = i + i; Chris@10: u = I[is * (k - 1)]; Chris@10: v = I[is * k]; Chris@10: buf[n - i] = u; Chris@10: buf[i] = v; Chris@10: } Chris@10: if (i == n - i) { Chris@10: buf[i] = I[is * (n - 1)]; Chris@10: } Chris@10: Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, buf, buf); Chris@10: } Chris@10: Chris@10: O[0] = K(2.0) * buf[0]; Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E a, b, wa, wb; Chris@10: a = K(2.0) * buf[i]; Chris@10: b = K(2.0) * buf[n - i]; Chris@10: wa = W[2*i]; Chris@10: wb = W[2*i + 1]; Chris@10: O[os * i] = wa * a + wb * b; Chris@10: O[os * (n - i)] = wb * a - wa * b; Chris@10: } Chris@10: if (i == n - i) { Chris@10: O[os * i] = K(2.0) * buf[i] * W[2*i]; Chris@10: } Chris@10: } Chris@10: Chris@10: X(ifree)(buf); Chris@10: } Chris@10: Chris@10: /* ro10 is same as re10, but with i <-> n - 1 - i in the output and Chris@10: the sign of the odd input elements flipped. */ Chris@10: static void apply_ro10(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT is = ego->is, os = ego->os; Chris@10: INT i, n = ego->n; Chris@10: INT iv, vl = ego->vl; Chris@10: INT ivs = ego->ivs, ovs = ego->ovs; Chris@10: R *W = ego->td->W; Chris@10: R *buf; Chris@10: Chris@10: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@10: Chris@10: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@10: buf[0] = I[0]; Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E u, v; Chris@10: INT k = i + i; Chris@10: u = -I[is * (k - 1)]; Chris@10: v = I[is * k]; Chris@10: buf[n - i] = u; Chris@10: buf[i] = v; Chris@10: } Chris@10: if (i == n - i) { Chris@10: buf[i] = -I[is * (n - 1)]; Chris@10: } Chris@10: Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, buf, buf); Chris@10: } Chris@10: Chris@10: O[os * (n - 1)] = K(2.0) * buf[0]; Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E a, b, wa, wb; Chris@10: a = K(2.0) * buf[i]; Chris@10: b = K(2.0) * buf[n - i]; Chris@10: wa = W[2*i]; Chris@10: wb = W[2*i + 1]; Chris@10: O[os * (n - 1 - i)] = wa * a + wb * b; Chris@10: O[os * (i - 1)] = wb * a - wa * b; Chris@10: } Chris@10: if (i == n - i) { Chris@10: O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i]; Chris@10: } Chris@10: } Chris@10: Chris@10: X(ifree)(buf); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: static const tw_instr reodft010e_tw[] = { Chris@10: { TW_COS, 0, 1 }, Chris@10: { TW_SIN, 0, 1 }, Chris@10: { TW_NEXT, 1, 0 } Chris@10: }; Chris@10: Chris@10: X(plan_awake)(ego->cld, wakefulness); Chris@10: Chris@10: X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw, Chris@10: 4*ego->n, 1, ego->n/2+1); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cld); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: p->print(p, "(%se-r2hc-%D%v%(%p%))", Chris@10: X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); Chris@10: } Chris@10: Chris@10: static int applicable0(const solver *ego_, const problem *p_) Chris@10: { Chris@10: const problem_rdft *p = (const problem_rdft *) p_; Chris@10: UNUSED(ego_); Chris@10: Chris@10: return (1 Chris@10: && p->sz->rnk == 1 Chris@10: && p->vecsz->rnk <= 1 Chris@10: && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10 Chris@10: || p->kind[0] == RODFT01 || p->kind[0] == RODFT10) Chris@10: ); Chris@10: } Chris@10: Chris@10: static int applicable(const solver *ego, const problem *p, const planner *plnr) Chris@10: { Chris@10: return (!NO_SLOWP(plnr) && applicable0(ego, p)); Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: P *pln; Chris@10: const problem_rdft *p; Chris@10: plan *cld; Chris@10: R *buf; Chris@10: INT n; Chris@10: opcnt ops; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(rdft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (!applicable(ego_, p_, plnr)) Chris@10: return (plan *)0; Chris@10: Chris@10: p = (const problem_rdft *) p_; Chris@10: Chris@10: n = p->sz->dims[0].n; Chris@10: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@10: Chris@10: cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), Chris@10: X(mktensor_0d)(), Chris@10: buf, buf, R2HC)); Chris@10: X(ifree)(buf); Chris@10: if (!cld) Chris@10: return (plan *)0; Chris@10: Chris@10: switch (p->kind[0]) { Chris@10: case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break; Chris@10: case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break; Chris@10: case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break; Chris@10: case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break; Chris@10: default: A(0); return (plan*)0; Chris@10: } Chris@10: Chris@10: pln->n = n; Chris@10: pln->is = p->sz->dims[0].is; Chris@10: pln->os = p->sz->dims[0].os; Chris@10: pln->cld = cld; Chris@10: pln->td = 0; Chris@10: pln->kind = p->kind[0]; Chris@10: Chris@10: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); Chris@10: Chris@10: X(ops_zero)(&ops); Chris@10: ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5; Chris@10: if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) { Chris@10: ops.add = (n-1)/2 * 6; Chris@10: ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2; Chris@10: } Chris@10: else { /* 10 transforms */ Chris@10: ops.add = (n-1)/2 * 2; Chris@10: ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2; Chris@10: } Chris@10: Chris@10: X(ops_zero)(&pln->super.super.ops); Chris@10: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); Chris@10: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); Chris@10: Chris@10: return &(pln->super.super); Chris@10: } Chris@10: Chris@10: /* constructor */ Chris@10: static solver *mksolver(void) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void X(reodft010e_r2hc_register)(planner *p) Chris@10: { Chris@10: REGISTER_SOLVER(p, mksolver()); Chris@10: }