Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2005 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2005 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21
|
Chris@10
|
22 /* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an
|
Chris@10
|
23 R{E,O}DFT00 problem and an RDFT problem of half the length.
|
Chris@10
|
24
|
Chris@10
|
25 This works by "logically" expanding the array to a real-even/odd DFT of
|
Chris@10
|
26 length 2n-/+2 and then applying the split-radix algorithm.
|
Chris@10
|
27
|
Chris@10
|
28 In this way, we can avoid having to pad to twice the length
|
Chris@10
|
29 (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1,
|
Chris@10
|
30 but don't incur the accuracy loss that the "ordinary" algorithm
|
Chris@10
|
31 sacrifices (ala redft00-r2hc.c).
|
Chris@10
|
32 */
|
Chris@10
|
33
|
Chris@10
|
34 #include "reodft.h"
|
Chris@10
|
35
|
Chris@10
|
36 typedef struct {
|
Chris@10
|
37 solver super;
|
Chris@10
|
38 } S;
|
Chris@10
|
39
|
Chris@10
|
40 typedef struct {
|
Chris@10
|
41 plan_rdft super;
|
Chris@10
|
42 plan *clde, *cldo;
|
Chris@10
|
43 twid *td;
|
Chris@10
|
44 INT is, os;
|
Chris@10
|
45 INT n;
|
Chris@10
|
46 INT vl;
|
Chris@10
|
47 INT ivs, ovs;
|
Chris@10
|
48 } P;
|
Chris@10
|
49
|
Chris@10
|
50 /* redft00 */
|
Chris@10
|
51 static void apply_e(const plan *ego_, R *I, R *O)
|
Chris@10
|
52 {
|
Chris@10
|
53 const P *ego = (const P *) ego_;
|
Chris@10
|
54 INT is = ego->is, os = ego->os;
|
Chris@10
|
55 INT i, j, n = ego->n + 1, n2 = (n-1)/2;
|
Chris@10
|
56 INT iv, vl = ego->vl;
|
Chris@10
|
57 INT ivs = ego->ivs, ovs = ego->ovs;
|
Chris@10
|
58 R *W = ego->td->W - 2;
|
Chris@10
|
59 R *buf;
|
Chris@10
|
60
|
Chris@10
|
61 buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS);
|
Chris@10
|
62
|
Chris@10
|
63 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
Chris@10
|
64 /* do size (n-1)/2 r2hc transform of odd-indexed elements
|
Chris@10
|
65 with stride 4, "wrapping around" end of array with even
|
Chris@10
|
66 boundary conditions */
|
Chris@10
|
67 for (j = 0, i = 1; i < n; i += 4)
|
Chris@10
|
68 buf[j++] = I[is * i];
|
Chris@10
|
69 for (i = 2*n-2-i; i > 0; i -= 4)
|
Chris@10
|
70 buf[j++] = I[is * i];
|
Chris@10
|
71 {
|
Chris@10
|
72 plan_rdft *cld = (plan_rdft *) ego->cldo;
|
Chris@10
|
73 cld->apply((plan *) cld, buf, buf);
|
Chris@10
|
74 }
|
Chris@10
|
75
|
Chris@10
|
76 /* do size (n+1)/2 redft00 of the even-indexed elements,
|
Chris@10
|
77 writing to O: */
|
Chris@10
|
78 {
|
Chris@10
|
79 plan_rdft *cld = (plan_rdft *) ego->clde;
|
Chris@10
|
80 cld->apply((plan *) cld, I, O);
|
Chris@10
|
81 }
|
Chris@10
|
82
|
Chris@10
|
83 /* combine the results with the twiddle factors to get output */
|
Chris@10
|
84 { /* DC element */
|
Chris@10
|
85 E b20 = O[0], b0 = K(2.0) * buf[0];
|
Chris@10
|
86 O[0] = b20 + b0;
|
Chris@10
|
87 O[2*(n2*os)] = b20 - b0;
|
Chris@10
|
88 /* O[n2*os] = O[n2*os]; */
|
Chris@10
|
89 }
|
Chris@10
|
90 for (i = 1; i < n2 - i; ++i) {
|
Chris@10
|
91 E ap, am, br, bi, wr, wi, wbr, wbi;
|
Chris@10
|
92 br = buf[i];
|
Chris@10
|
93 bi = buf[n2 - i];
|
Chris@10
|
94 wr = W[2*i];
|
Chris@10
|
95 wi = W[2*i+1];
|
Chris@10
|
96 #if FFT_SIGN == -1
|
Chris@10
|
97 wbr = K(2.0) * (wr*br + wi*bi);
|
Chris@10
|
98 wbi = K(2.0) * (wr*bi - wi*br);
|
Chris@10
|
99 #else
|
Chris@10
|
100 wbr = K(2.0) * (wr*br - wi*bi);
|
Chris@10
|
101 wbi = K(2.0) * (wr*bi + wi*br);
|
Chris@10
|
102 #endif
|
Chris@10
|
103 ap = O[i*os];
|
Chris@10
|
104 O[i*os] = ap + wbr;
|
Chris@10
|
105 O[(2*n2 - i)*os] = ap - wbr;
|
Chris@10
|
106 am = O[(n2 - i)*os];
|
Chris@10
|
107 #if FFT_SIGN == -1
|
Chris@10
|
108 O[(n2 - i)*os] = am - wbi;
|
Chris@10
|
109 O[(n2 + i)*os] = am + wbi;
|
Chris@10
|
110 #else
|
Chris@10
|
111 O[(n2 - i)*os] = am + wbi;
|
Chris@10
|
112 O[(n2 + i)*os] = am - wbi;
|
Chris@10
|
113 #endif
|
Chris@10
|
114 }
|
Chris@10
|
115 if (i == n2 - i) { /* Nyquist element */
|
Chris@10
|
116 E ap, wbr;
|
Chris@10
|
117 wbr = K(2.0) * (W[2*i] * buf[i]);
|
Chris@10
|
118 ap = O[i*os];
|
Chris@10
|
119 O[i*os] = ap + wbr;
|
Chris@10
|
120 O[(2*n2 - i)*os] = ap - wbr;
|
Chris@10
|
121 }
|
Chris@10
|
122 }
|
Chris@10
|
123
|
Chris@10
|
124 X(ifree)(buf);
|
Chris@10
|
125 }
|
Chris@10
|
126
|
Chris@10
|
127 /* rodft00 */
|
Chris@10
|
128 static void apply_o(const plan *ego_, R *I, R *O)
|
Chris@10
|
129 {
|
Chris@10
|
130 const P *ego = (const P *) ego_;
|
Chris@10
|
131 INT is = ego->is, os = ego->os;
|
Chris@10
|
132 INT i, j, n = ego->n - 1, n2 = (n+1)/2;
|
Chris@10
|
133 INT iv, vl = ego->vl;
|
Chris@10
|
134 INT ivs = ego->ivs, ovs = ego->ovs;
|
Chris@10
|
135 R *W = ego->td->W - 2;
|
Chris@10
|
136 R *buf;
|
Chris@10
|
137
|
Chris@10
|
138 buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS);
|
Chris@10
|
139
|
Chris@10
|
140 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
Chris@10
|
141 /* do size (n+1)/2 r2hc transform of even-indexed elements
|
Chris@10
|
142 with stride 4, "wrapping around" end of array with odd
|
Chris@10
|
143 boundary conditions */
|
Chris@10
|
144 for (j = 0, i = 0; i < n; i += 4)
|
Chris@10
|
145 buf[j++] = I[is * i];
|
Chris@10
|
146 for (i = 2*n-i; i > 0; i -= 4)
|
Chris@10
|
147 buf[j++] = -I[is * i];
|
Chris@10
|
148 {
|
Chris@10
|
149 plan_rdft *cld = (plan_rdft *) ego->cldo;
|
Chris@10
|
150 cld->apply((plan *) cld, buf, buf);
|
Chris@10
|
151 }
|
Chris@10
|
152
|
Chris@10
|
153 /* do size (n-1)/2 rodft00 of the odd-indexed elements,
|
Chris@10
|
154 writing to O: */
|
Chris@10
|
155 {
|
Chris@10
|
156 plan_rdft *cld = (plan_rdft *) ego->clde;
|
Chris@10
|
157 if (I == O) {
|
Chris@10
|
158 /* can't use I+is and I, subplan would lose in-placeness */
|
Chris@10
|
159 cld->apply((plan *) cld, I + is, I + is);
|
Chris@10
|
160 /* we could maybe avoid this copy by modifying the
|
Chris@10
|
161 twiddle loop, but currently I can't be bothered. */
|
Chris@10
|
162 A(is >= os);
|
Chris@10
|
163 for (i = 0; i < n2-1; ++i)
|
Chris@10
|
164 O[os*i] = I[is*(i+1)];
|
Chris@10
|
165 }
|
Chris@10
|
166 else
|
Chris@10
|
167 cld->apply((plan *) cld, I + is, O);
|
Chris@10
|
168 }
|
Chris@10
|
169
|
Chris@10
|
170 /* combine the results with the twiddle factors to get output */
|
Chris@10
|
171 O[(n2-1)*os] = K(2.0) * buf[0];
|
Chris@10
|
172 for (i = 1; i < n2 - i; ++i) {
|
Chris@10
|
173 E ap, am, br, bi, wr, wi, wbr, wbi;
|
Chris@10
|
174 br = buf[i];
|
Chris@10
|
175 bi = buf[n2 - i];
|
Chris@10
|
176 wr = W[2*i];
|
Chris@10
|
177 wi = W[2*i+1];
|
Chris@10
|
178 #if FFT_SIGN == -1
|
Chris@10
|
179 wbr = K(2.0) * (wr*br + wi*bi);
|
Chris@10
|
180 wbi = K(2.0) * (wi*br - wr*bi);
|
Chris@10
|
181 #else
|
Chris@10
|
182 wbr = K(2.0) * (wr*br - wi*bi);
|
Chris@10
|
183 wbi = K(2.0) * (wr*bi + wi*br);
|
Chris@10
|
184 #endif
|
Chris@10
|
185 ap = O[(i-1)*os];
|
Chris@10
|
186 O[(i-1)*os] = wbi + ap;
|
Chris@10
|
187 O[(2*n2-1 - i)*os] = wbi - ap;
|
Chris@10
|
188 am = O[(n2-1 - i)*os];
|
Chris@10
|
189 #if FFT_SIGN == -1
|
Chris@10
|
190 O[(n2-1 - i)*os] = wbr + am;
|
Chris@10
|
191 O[(n2-1 + i)*os] = wbr - am;
|
Chris@10
|
192 #else
|
Chris@10
|
193 O[(n2-1 - i)*os] = wbr + am;
|
Chris@10
|
194 O[(n2-1 + i)*os] = wbr - am;
|
Chris@10
|
195 #endif
|
Chris@10
|
196 }
|
Chris@10
|
197 if (i == n2 - i) { /* Nyquist element */
|
Chris@10
|
198 E ap, wbi;
|
Chris@10
|
199 wbi = K(2.0) * (W[2*i+1] * buf[i]);
|
Chris@10
|
200 ap = O[(i-1)*os];
|
Chris@10
|
201 O[(i-1)*os] = wbi + ap;
|
Chris@10
|
202 O[(2*n2-1 - i)*os] = wbi - ap;
|
Chris@10
|
203 }
|
Chris@10
|
204 }
|
Chris@10
|
205
|
Chris@10
|
206 X(ifree)(buf);
|
Chris@10
|
207 }
|
Chris@10
|
208
|
Chris@10
|
209 static void awake(plan *ego_, enum wakefulness wakefulness)
|
Chris@10
|
210 {
|
Chris@10
|
211 P *ego = (P *) ego_;
|
Chris@10
|
212 static const tw_instr reodft00e_tw[] = {
|
Chris@10
|
213 { TW_COS, 1, 1 },
|
Chris@10
|
214 { TW_SIN, 1, 1 },
|
Chris@10
|
215 { TW_NEXT, 1, 0 }
|
Chris@10
|
216 };
|
Chris@10
|
217
|
Chris@10
|
218 X(plan_awake)(ego->clde, wakefulness);
|
Chris@10
|
219 X(plan_awake)(ego->cldo, wakefulness);
|
Chris@10
|
220 X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw,
|
Chris@10
|
221 2*ego->n, 1, ego->n/4);
|
Chris@10
|
222 }
|
Chris@10
|
223
|
Chris@10
|
224 static void destroy(plan *ego_)
|
Chris@10
|
225 {
|
Chris@10
|
226 P *ego = (P *) ego_;
|
Chris@10
|
227 X(plan_destroy_internal)(ego->cldo);
|
Chris@10
|
228 X(plan_destroy_internal)(ego->clde);
|
Chris@10
|
229 }
|
Chris@10
|
230
|
Chris@10
|
231 static void print(const plan *ego_, printer *p)
|
Chris@10
|
232 {
|
Chris@10
|
233 const P *ego = (const P *) ego_;
|
Chris@10
|
234 if (ego->super.apply == apply_e)
|
Chris@10
|
235 p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))",
|
Chris@10
|
236 ego->n + 1, ego->vl, ego->clde, ego->cldo);
|
Chris@10
|
237 else
|
Chris@10
|
238 p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))",
|
Chris@10
|
239 ego->n - 1, ego->vl, ego->clde, ego->cldo);
|
Chris@10
|
240 }
|
Chris@10
|
241
|
Chris@10
|
242 static int applicable0(const solver *ego_, const problem *p_)
|
Chris@10
|
243 {
|
Chris@10
|
244 const problem_rdft *p = (const problem_rdft *) p_;
|
Chris@10
|
245 UNUSED(ego_);
|
Chris@10
|
246
|
Chris@10
|
247 return (1
|
Chris@10
|
248 && p->sz->rnk == 1
|
Chris@10
|
249 && p->vecsz->rnk <= 1
|
Chris@10
|
250 && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00)
|
Chris@10
|
251 && p->sz->dims[0].n > 1 /* don't create size-0 sub-plans */
|
Chris@10
|
252 && p->sz->dims[0].n % 2 /* odd: 4 divides "logical" DFT */
|
Chris@10
|
253 && (p->I != p->O || p->vecsz->rnk == 0
|
Chris@10
|
254 || p->vecsz->dims[0].is == p->vecsz->dims[0].os)
|
Chris@10
|
255 && (p->kind[0] != RODFT00 || p->I != p->O ||
|
Chris@10
|
256 p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */
|
Chris@10
|
257 );
|
Chris@10
|
258 }
|
Chris@10
|
259
|
Chris@10
|
260 static int applicable(const solver *ego, const problem *p, const planner *plnr)
|
Chris@10
|
261 {
|
Chris@10
|
262 return (!NO_SLOWP(plnr) && applicable0(ego, p));
|
Chris@10
|
263 }
|
Chris@10
|
264
|
Chris@10
|
265 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
Chris@10
|
266 {
|
Chris@10
|
267 P *pln;
|
Chris@10
|
268 const problem_rdft *p;
|
Chris@10
|
269 plan *clde, *cldo;
|
Chris@10
|
270 R *buf;
|
Chris@10
|
271 INT n, n0;
|
Chris@10
|
272 opcnt ops;
|
Chris@10
|
273 int inplace_odd;
|
Chris@10
|
274
|
Chris@10
|
275 static const plan_adt padt = {
|
Chris@10
|
276 X(rdft_solve), awake, print, destroy
|
Chris@10
|
277 };
|
Chris@10
|
278
|
Chris@10
|
279 if (!applicable(ego_, p_, plnr))
|
Chris@10
|
280 return (plan *)0;
|
Chris@10
|
281
|
Chris@10
|
282 p = (const problem_rdft *) p_;
|
Chris@10
|
283
|
Chris@10
|
284 n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1);
|
Chris@10
|
285 A(n > 0 && n % 2 == 0);
|
Chris@10
|
286 buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS);
|
Chris@10
|
287
|
Chris@10
|
288 inplace_odd = p->kind[0]==RODFT00 && p->I == p->O;
|
Chris@10
|
289 clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(
|
Chris@10
|
290 X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is,
|
Chris@10
|
291 inplace_odd ? p->sz->dims[0].is
|
Chris@10
|
292 : p->sz->dims[0].os),
|
Chris@10
|
293 X(mktensor_0d)(),
|
Chris@10
|
294 TAINT(p->I
|
Chris@10
|
295 + p->sz->dims[0].is * (p->kind[0]==RODFT00),
|
Chris@10
|
296 p->vecsz->rnk ? p->vecsz->dims[0].is : 0),
|
Chris@10
|
297 TAINT(p->O
|
Chris@10
|
298 + p->sz->dims[0].is * inplace_odd,
|
Chris@10
|
299 p->vecsz->rnk ? p->vecsz->dims[0].os : 0),
|
Chris@10
|
300 p->kind[0]));
|
Chris@10
|
301 if (!clde) {
|
Chris@10
|
302 X(ifree)(buf);
|
Chris@10
|
303 return (plan *)0;
|
Chris@10
|
304 }
|
Chris@10
|
305
|
Chris@10
|
306 cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(
|
Chris@10
|
307 X(mktensor_1d)(n/2, 1, 1),
|
Chris@10
|
308 X(mktensor_0d)(),
|
Chris@10
|
309 buf, buf, R2HC));
|
Chris@10
|
310 X(ifree)(buf);
|
Chris@10
|
311 if (!cldo)
|
Chris@10
|
312 return (plan *)0;
|
Chris@10
|
313
|
Chris@10
|
314 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o);
|
Chris@10
|
315
|
Chris@10
|
316 pln->n = n;
|
Chris@10
|
317 pln->is = p->sz->dims[0].is;
|
Chris@10
|
318 pln->os = p->sz->dims[0].os;
|
Chris@10
|
319 pln->clde = clde;
|
Chris@10
|
320 pln->cldo = cldo;
|
Chris@10
|
321 pln->td = 0;
|
Chris@10
|
322
|
Chris@10
|
323 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
|
Chris@10
|
324
|
Chris@10
|
325 X(ops_zero)(&ops);
|
Chris@10
|
326 ops.other = n/2;
|
Chris@10
|
327 ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) +
|
Chris@10
|
328 (n/2-1)/2 * 6 + ((n/2)%2==0) * 2;
|
Chris@10
|
329 ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2;
|
Chris@10
|
330
|
Chris@10
|
331 /* tweak ops.other so that r2hc-pad is used for small sizes, which
|
Chris@10
|
332 seems to be a lot faster on my machine: */
|
Chris@10
|
333 ops.other += 256;
|
Chris@10
|
334
|
Chris@10
|
335 X(ops_zero)(&pln->super.super.ops);
|
Chris@10
|
336 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
|
Chris@10
|
337 X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops);
|
Chris@10
|
338 X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops);
|
Chris@10
|
339
|
Chris@10
|
340 return &(pln->super.super);
|
Chris@10
|
341 }
|
Chris@10
|
342
|
Chris@10
|
343 /* constructor */
|
Chris@10
|
344 static solver *mksolver(void)
|
Chris@10
|
345 {
|
Chris@10
|
346 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
Chris@10
|
347 S *slv = MKSOLVER(S, &sadt);
|
Chris@10
|
348 return &(slv->super);
|
Chris@10
|
349 }
|
Chris@10
|
350
|
Chris@10
|
351 void X(reodft00e_splitradix_register)(planner *p)
|
Chris@10
|
352 {
|
Chris@10
|
353 REGISTER_SOLVER(p, mksolver());
|
Chris@10
|
354 }
|