Chris@10: /* Chris@10: * Copyright (c) 2005 Matteo Frigo Chris@10: * Copyright (c) 2005 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: /* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an Chris@10: R{E,O}DFT00 problem and an RDFT problem of half the length. Chris@10: Chris@10: This works by "logically" expanding the array to a real-even/odd DFT of Chris@10: length 2n-/+2 and then applying the split-radix algorithm. Chris@10: Chris@10: In this way, we can avoid having to pad to twice the length Chris@10: (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1, Chris@10: but don't incur the accuracy loss that the "ordinary" algorithm Chris@10: sacrifices (ala redft00-r2hc.c). Chris@10: */ Chris@10: Chris@10: #include "reodft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_rdft super; Chris@10: plan *clde, *cldo; Chris@10: twid *td; Chris@10: INT is, os; Chris@10: INT n; Chris@10: INT vl; Chris@10: INT ivs, ovs; Chris@10: } P; Chris@10: Chris@10: /* redft00 */ Chris@10: static void apply_e(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT is = ego->is, os = ego->os; Chris@10: INT i, j, n = ego->n + 1, n2 = (n-1)/2; Chris@10: INT iv, vl = ego->vl; Chris@10: INT ivs = ego->ivs, ovs = ego->ovs; Chris@10: R *W = ego->td->W - 2; Chris@10: R *buf; Chris@10: Chris@10: buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); Chris@10: Chris@10: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@10: /* do size (n-1)/2 r2hc transform of odd-indexed elements Chris@10: with stride 4, "wrapping around" end of array with even Chris@10: boundary conditions */ Chris@10: for (j = 0, i = 1; i < n; i += 4) Chris@10: buf[j++] = I[is * i]; Chris@10: for (i = 2*n-2-i; i > 0; i -= 4) Chris@10: buf[j++] = I[is * i]; Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->cldo; Chris@10: cld->apply((plan *) cld, buf, buf); Chris@10: } Chris@10: Chris@10: /* do size (n+1)/2 redft00 of the even-indexed elements, Chris@10: writing to O: */ Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->clde; Chris@10: cld->apply((plan *) cld, I, O); Chris@10: } Chris@10: Chris@10: /* combine the results with the twiddle factors to get output */ Chris@10: { /* DC element */ Chris@10: E b20 = O[0], b0 = K(2.0) * buf[0]; Chris@10: O[0] = b20 + b0; Chris@10: O[2*(n2*os)] = b20 - b0; Chris@10: /* O[n2*os] = O[n2*os]; */ Chris@10: } Chris@10: for (i = 1; i < n2 - i; ++i) { Chris@10: E ap, am, br, bi, wr, wi, wbr, wbi; Chris@10: br = buf[i]; Chris@10: bi = buf[n2 - i]; Chris@10: wr = W[2*i]; Chris@10: wi = W[2*i+1]; Chris@10: #if FFT_SIGN == -1 Chris@10: wbr = K(2.0) * (wr*br + wi*bi); Chris@10: wbi = K(2.0) * (wr*bi - wi*br); Chris@10: #else Chris@10: wbr = K(2.0) * (wr*br - wi*bi); Chris@10: wbi = K(2.0) * (wr*bi + wi*br); Chris@10: #endif Chris@10: ap = O[i*os]; Chris@10: O[i*os] = ap + wbr; Chris@10: O[(2*n2 - i)*os] = ap - wbr; Chris@10: am = O[(n2 - i)*os]; Chris@10: #if FFT_SIGN == -1 Chris@10: O[(n2 - i)*os] = am - wbi; Chris@10: O[(n2 + i)*os] = am + wbi; Chris@10: #else Chris@10: O[(n2 - i)*os] = am + wbi; Chris@10: O[(n2 + i)*os] = am - wbi; Chris@10: #endif Chris@10: } Chris@10: if (i == n2 - i) { /* Nyquist element */ Chris@10: E ap, wbr; Chris@10: wbr = K(2.0) * (W[2*i] * buf[i]); Chris@10: ap = O[i*os]; Chris@10: O[i*os] = ap + wbr; Chris@10: O[(2*n2 - i)*os] = ap - wbr; Chris@10: } Chris@10: } Chris@10: Chris@10: X(ifree)(buf); Chris@10: } Chris@10: Chris@10: /* rodft00 */ Chris@10: static void apply_o(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT is = ego->is, os = ego->os; Chris@10: INT i, j, n = ego->n - 1, n2 = (n+1)/2; Chris@10: INT iv, vl = ego->vl; Chris@10: INT ivs = ego->ivs, ovs = ego->ovs; Chris@10: R *W = ego->td->W - 2; Chris@10: R *buf; Chris@10: Chris@10: buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); Chris@10: Chris@10: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@10: /* do size (n+1)/2 r2hc transform of even-indexed elements Chris@10: with stride 4, "wrapping around" end of array with odd Chris@10: boundary conditions */ Chris@10: for (j = 0, i = 0; i < n; i += 4) Chris@10: buf[j++] = I[is * i]; Chris@10: for (i = 2*n-i; i > 0; i -= 4) Chris@10: buf[j++] = -I[is * i]; Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->cldo; Chris@10: cld->apply((plan *) cld, buf, buf); Chris@10: } Chris@10: Chris@10: /* do size (n-1)/2 rodft00 of the odd-indexed elements, Chris@10: writing to O: */ Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->clde; Chris@10: if (I == O) { Chris@10: /* can't use I+is and I, subplan would lose in-placeness */ Chris@10: cld->apply((plan *) cld, I + is, I + is); Chris@10: /* we could maybe avoid this copy by modifying the Chris@10: twiddle loop, but currently I can't be bothered. */ Chris@10: A(is >= os); Chris@10: for (i = 0; i < n2-1; ++i) Chris@10: O[os*i] = I[is*(i+1)]; Chris@10: } Chris@10: else Chris@10: cld->apply((plan *) cld, I + is, O); Chris@10: } Chris@10: Chris@10: /* combine the results with the twiddle factors to get output */ Chris@10: O[(n2-1)*os] = K(2.0) * buf[0]; Chris@10: for (i = 1; i < n2 - i; ++i) { Chris@10: E ap, am, br, bi, wr, wi, wbr, wbi; Chris@10: br = buf[i]; Chris@10: bi = buf[n2 - i]; Chris@10: wr = W[2*i]; Chris@10: wi = W[2*i+1]; Chris@10: #if FFT_SIGN == -1 Chris@10: wbr = K(2.0) * (wr*br + wi*bi); Chris@10: wbi = K(2.0) * (wi*br - wr*bi); Chris@10: #else Chris@10: wbr = K(2.0) * (wr*br - wi*bi); Chris@10: wbi = K(2.0) * (wr*bi + wi*br); Chris@10: #endif Chris@10: ap = O[(i-1)*os]; Chris@10: O[(i-1)*os] = wbi + ap; Chris@10: O[(2*n2-1 - i)*os] = wbi - ap; Chris@10: am = O[(n2-1 - i)*os]; Chris@10: #if FFT_SIGN == -1 Chris@10: O[(n2-1 - i)*os] = wbr + am; Chris@10: O[(n2-1 + i)*os] = wbr - am; Chris@10: #else Chris@10: O[(n2-1 - i)*os] = wbr + am; Chris@10: O[(n2-1 + i)*os] = wbr - am; Chris@10: #endif Chris@10: } Chris@10: if (i == n2 - i) { /* Nyquist element */ Chris@10: E ap, wbi; Chris@10: wbi = K(2.0) * (W[2*i+1] * buf[i]); Chris@10: ap = O[(i-1)*os]; Chris@10: O[(i-1)*os] = wbi + ap; Chris@10: O[(2*n2-1 - i)*os] = wbi - ap; Chris@10: } Chris@10: } Chris@10: Chris@10: X(ifree)(buf); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: static const tw_instr reodft00e_tw[] = { Chris@10: { TW_COS, 1, 1 }, Chris@10: { TW_SIN, 1, 1 }, Chris@10: { TW_NEXT, 1, 0 } Chris@10: }; Chris@10: Chris@10: X(plan_awake)(ego->clde, wakefulness); Chris@10: X(plan_awake)(ego->cldo, wakefulness); Chris@10: X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw, Chris@10: 2*ego->n, 1, ego->n/4); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cldo); Chris@10: X(plan_destroy_internal)(ego->clde); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: if (ego->super.apply == apply_e) Chris@10: p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))", Chris@10: ego->n + 1, ego->vl, ego->clde, ego->cldo); Chris@10: else Chris@10: p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))", Chris@10: ego->n - 1, ego->vl, ego->clde, ego->cldo); Chris@10: } Chris@10: Chris@10: static int applicable0(const solver *ego_, const problem *p_) Chris@10: { Chris@10: const problem_rdft *p = (const problem_rdft *) p_; Chris@10: UNUSED(ego_); Chris@10: Chris@10: return (1 Chris@10: && p->sz->rnk == 1 Chris@10: && p->vecsz->rnk <= 1 Chris@10: && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00) Chris@10: && p->sz->dims[0].n > 1 /* don't create size-0 sub-plans */ Chris@10: && p->sz->dims[0].n % 2 /* odd: 4 divides "logical" DFT */ Chris@10: && (p->I != p->O || p->vecsz->rnk == 0 Chris@10: || p->vecsz->dims[0].is == p->vecsz->dims[0].os) Chris@10: && (p->kind[0] != RODFT00 || p->I != p->O || Chris@10: p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */ Chris@10: ); Chris@10: } Chris@10: Chris@10: static int applicable(const solver *ego, const problem *p, const planner *plnr) Chris@10: { Chris@10: return (!NO_SLOWP(plnr) && applicable0(ego, p)); Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: P *pln; Chris@10: const problem_rdft *p; Chris@10: plan *clde, *cldo; Chris@10: R *buf; Chris@10: INT n, n0; Chris@10: opcnt ops; Chris@10: int inplace_odd; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(rdft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (!applicable(ego_, p_, plnr)) Chris@10: return (plan *)0; Chris@10: Chris@10: p = (const problem_rdft *) p_; Chris@10: Chris@10: n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1); Chris@10: A(n > 0 && n % 2 == 0); Chris@10: buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS); Chris@10: Chris@10: inplace_odd = p->kind[0]==RODFT00 && p->I == p->O; Chris@10: clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( Chris@10: X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is, Chris@10: inplace_odd ? p->sz->dims[0].is Chris@10: : p->sz->dims[0].os), Chris@10: X(mktensor_0d)(), Chris@10: TAINT(p->I Chris@10: + p->sz->dims[0].is * (p->kind[0]==RODFT00), Chris@10: p->vecsz->rnk ? p->vecsz->dims[0].is : 0), Chris@10: TAINT(p->O Chris@10: + p->sz->dims[0].is * inplace_odd, Chris@10: p->vecsz->rnk ? p->vecsz->dims[0].os : 0), Chris@10: p->kind[0])); Chris@10: if (!clde) { Chris@10: X(ifree)(buf); Chris@10: return (plan *)0; Chris@10: } Chris@10: Chris@10: cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( Chris@10: X(mktensor_1d)(n/2, 1, 1), Chris@10: X(mktensor_0d)(), Chris@10: buf, buf, R2HC)); Chris@10: X(ifree)(buf); Chris@10: if (!cldo) Chris@10: return (plan *)0; Chris@10: Chris@10: pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o); Chris@10: Chris@10: pln->n = n; Chris@10: pln->is = p->sz->dims[0].is; Chris@10: pln->os = p->sz->dims[0].os; Chris@10: pln->clde = clde; Chris@10: pln->cldo = cldo; Chris@10: pln->td = 0; Chris@10: Chris@10: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); Chris@10: Chris@10: X(ops_zero)(&ops); Chris@10: ops.other = n/2; Chris@10: ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) + Chris@10: (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; Chris@10: ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; Chris@10: Chris@10: /* tweak ops.other so that r2hc-pad is used for small sizes, which Chris@10: seems to be a lot faster on my machine: */ Chris@10: ops.other += 256; Chris@10: Chris@10: X(ops_zero)(&pln->super.super.ops); Chris@10: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); Chris@10: X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops); Chris@10: X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops); Chris@10: Chris@10: return &(pln->super.super); Chris@10: } Chris@10: Chris@10: /* constructor */ Chris@10: static solver *mksolver(void) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void X(reodft00e_splitradix_register)(planner *p) Chris@10: { Chris@10: REGISTER_SOLVER(p, mksolver()); Chris@10: }