annotate src/fftw-3.3.3/rdft/rank-geq2.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 /* plans for RDFT of rank >= 2 (multidimensional) */
Chris@10 23
Chris@10 24 /* FIXME: this solver cannot strictly be applied to multidimensional
Chris@10 25 DHTs, since the latter are not separable...up to rnk-1 additional
Chris@10 26 post-processing passes may be required. See also:
Chris@10 27
Chris@10 28 R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast
Chris@10 29 two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986).
Chris@10 30
Chris@10 31 H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm
Chris@10 32 using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987).
Chris@10 33 */
Chris@10 34
Chris@10 35 #include "rdft.h"
Chris@10 36
Chris@10 37 typedef struct {
Chris@10 38 solver super;
Chris@10 39 int spltrnk;
Chris@10 40 const int *buddies;
Chris@10 41 int nbuddies;
Chris@10 42 } S;
Chris@10 43
Chris@10 44 typedef struct {
Chris@10 45 plan_rdft super;
Chris@10 46
Chris@10 47 plan *cld1, *cld2;
Chris@10 48 const S *solver;
Chris@10 49 } P;
Chris@10 50
Chris@10 51 /* Compute multi-dimensional RDFT by applying the two cld plans
Chris@10 52 (lower-rnk RDFTs). */
Chris@10 53 static void apply(const plan *ego_, R *I, R *O)
Chris@10 54 {
Chris@10 55 const P *ego = (const P *) ego_;
Chris@10 56 plan_rdft *cld1, *cld2;
Chris@10 57
Chris@10 58 cld1 = (plan_rdft *) ego->cld1;
Chris@10 59 cld1->apply(ego->cld1, I, O);
Chris@10 60
Chris@10 61 cld2 = (plan_rdft *) ego->cld2;
Chris@10 62 cld2->apply(ego->cld2, O, O);
Chris@10 63 }
Chris@10 64
Chris@10 65
Chris@10 66 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 67 {
Chris@10 68 P *ego = (P *) ego_;
Chris@10 69 X(plan_awake)(ego->cld1, wakefulness);
Chris@10 70 X(plan_awake)(ego->cld2, wakefulness);
Chris@10 71 }
Chris@10 72
Chris@10 73 static void destroy(plan *ego_)
Chris@10 74 {
Chris@10 75 P *ego = (P *) ego_;
Chris@10 76 X(plan_destroy_internal)(ego->cld2);
Chris@10 77 X(plan_destroy_internal)(ego->cld1);
Chris@10 78 }
Chris@10 79
Chris@10 80 static void print(const plan *ego_, printer *p)
Chris@10 81 {
Chris@10 82 const P *ego = (const P *) ego_;
Chris@10 83 const S *s = ego->solver;
Chris@10 84 p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))",
Chris@10 85 s->spltrnk, ego->cld1, ego->cld2);
Chris@10 86 }
Chris@10 87
Chris@10 88 static int picksplit(const S *ego, const tensor *sz, int *rp)
Chris@10 89 {
Chris@10 90 A(sz->rnk > 1); /* cannot split rnk <= 1 */
Chris@10 91 if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp))
Chris@10 92 return 0;
Chris@10 93 *rp += 1; /* convert from dim. index to rank */
Chris@10 94 if (*rp >= sz->rnk) /* split must reduce rank */
Chris@10 95 return 0;
Chris@10 96 return 1;
Chris@10 97 }
Chris@10 98
Chris@10 99 static int applicable0(const solver *ego_, const problem *p_, int *rp)
Chris@10 100 {
Chris@10 101 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 102 const S *ego = (const S *)ego_;
Chris@10 103 return (1
Chris@10 104 && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk)
Chris@10 105 && p->sz->rnk >= 2
Chris@10 106 && picksplit(ego, p->sz, rp)
Chris@10 107 );
Chris@10 108 }
Chris@10 109
Chris@10 110 /* TODO: revise this. */
Chris@10 111 static int applicable(const solver *ego_, const problem *p_,
Chris@10 112 const planner *plnr, int *rp)
Chris@10 113 {
Chris@10 114 const S *ego = (const S *)ego_;
Chris@10 115
Chris@10 116 if (!applicable0(ego_, p_, rp)) return 0;
Chris@10 117
Chris@10 118 if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0]))
Chris@10 119 return 0;
Chris@10 120
Chris@10 121 if (NO_UGLYP(plnr)) {
Chris@10 122 /* Heuristic: if the vector stride is greater than the transform
Chris@10 123 sz, don't use (prefer to do the vector loop first with a
Chris@10 124 vrank-geq1 plan). */
Chris@10 125 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 126
Chris@10 127 if (p->vecsz->rnk > 0 &&
Chris@10 128 X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz))
Chris@10 129 return 0;
Chris@10 130 }
Chris@10 131
Chris@10 132 return 1;
Chris@10 133 }
Chris@10 134
Chris@10 135 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 136 {
Chris@10 137 const S *ego = (const S *) ego_;
Chris@10 138 const problem_rdft *p;
Chris@10 139 P *pln;
Chris@10 140 plan *cld1 = 0, *cld2 = 0;
Chris@10 141 tensor *sz1, *sz2, *vecszi, *sz2i;
Chris@10 142 int spltrnk;
Chris@10 143
Chris@10 144 static const plan_adt padt = {
Chris@10 145 X(rdft_solve), awake, print, destroy
Chris@10 146 };
Chris@10 147
Chris@10 148 if (!applicable(ego_, p_, plnr, &spltrnk))
Chris@10 149 return (plan *) 0;
Chris@10 150
Chris@10 151 p = (const problem_rdft *) p_;
Chris@10 152 X(tensor_split)(p->sz, &sz1, spltrnk, &sz2);
Chris@10 153 vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS);
Chris@10 154 sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS);
Chris@10 155
Chris@10 156 cld1 = X(mkplan_d)(plnr,
Chris@10 157 X(mkproblem_rdft_d)(X(tensor_copy)(sz2),
Chris@10 158 X(tensor_append)(p->vecsz, sz1),
Chris@10 159 p->I, p->O, p->kind + spltrnk));
Chris@10 160 if (!cld1) goto nada;
Chris@10 161
Chris@10 162 cld2 = X(mkplan_d)(plnr,
Chris@10 163 X(mkproblem_rdft_d)(
Chris@10 164 X(tensor_copy_inplace)(sz1, INPLACE_OS),
Chris@10 165 X(tensor_append)(vecszi, sz2i),
Chris@10 166 p->O, p->O, p->kind));
Chris@10 167 if (!cld2) goto nada;
Chris@10 168
Chris@10 169 pln = MKPLAN_RDFT(P, &padt, apply);
Chris@10 170
Chris@10 171 pln->cld1 = cld1;
Chris@10 172 pln->cld2 = cld2;
Chris@10 173
Chris@10 174 pln->solver = ego;
Chris@10 175 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
Chris@10 176
Chris@10 177 X(tensor_destroy4)(sz2, sz1, vecszi, sz2i);
Chris@10 178
Chris@10 179 return &(pln->super.super);
Chris@10 180
Chris@10 181 nada:
Chris@10 182 X(plan_destroy_internal)(cld2);
Chris@10 183 X(plan_destroy_internal)(cld1);
Chris@10 184 X(tensor_destroy4)(sz2, sz1, vecszi, sz2i);
Chris@10 185 return (plan *) 0;
Chris@10 186 }
Chris@10 187
Chris@10 188 static solver *mksolver(int spltrnk, const int *buddies, int nbuddies)
Chris@10 189 {
Chris@10 190 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@10 191 S *slv = MKSOLVER(S, &sadt);
Chris@10 192 slv->spltrnk = spltrnk;
Chris@10 193 slv->buddies = buddies;
Chris@10 194 slv->nbuddies = nbuddies;
Chris@10 195 return &(slv->super);
Chris@10 196 }
Chris@10 197
Chris@10 198 void X(rdft_rank_geq2_register)(planner *p)
Chris@10 199 {
Chris@10 200 int i;
Chris@10 201 static const int buddies[] = { 1, 0, -2 };
Chris@10 202
Chris@10 203 const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0]));
Chris@10 204
Chris@10 205 for (i = 0; i < nbuddies; ++i)
Chris@10 206 REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies));
Chris@10 207
Chris@10 208 /* FIXME: Should we try more buddies? See also dft/rank-geq2. */
Chris@10 209 }