Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: /* plans for RDFT of rank >= 2 (multidimensional) */ Chris@10: Chris@10: /* FIXME: this solver cannot strictly be applied to multidimensional Chris@10: DHTs, since the latter are not separable...up to rnk-1 additional Chris@10: post-processing passes may be required. See also: Chris@10: Chris@10: R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast Chris@10: two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986). Chris@10: Chris@10: H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm Chris@10: using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987). Chris@10: */ Chris@10: Chris@10: #include "rdft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: int spltrnk; Chris@10: const int *buddies; Chris@10: int nbuddies; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_rdft super; Chris@10: Chris@10: plan *cld1, *cld2; Chris@10: const S *solver; Chris@10: } P; Chris@10: Chris@10: /* Compute multi-dimensional RDFT by applying the two cld plans Chris@10: (lower-rnk RDFTs). */ Chris@10: static void apply(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: plan_rdft *cld1, *cld2; Chris@10: Chris@10: cld1 = (plan_rdft *) ego->cld1; Chris@10: cld1->apply(ego->cld1, I, O); Chris@10: Chris@10: cld2 = (plan_rdft *) ego->cld2; Chris@10: cld2->apply(ego->cld2, O, O); Chris@10: } Chris@10: Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_awake)(ego->cld1, wakefulness); Chris@10: X(plan_awake)(ego->cld2, wakefulness); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cld2); Chris@10: X(plan_destroy_internal)(ego->cld1); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: const S *s = ego->solver; Chris@10: p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))", Chris@10: s->spltrnk, ego->cld1, ego->cld2); Chris@10: } Chris@10: Chris@10: static int picksplit(const S *ego, const tensor *sz, int *rp) Chris@10: { Chris@10: A(sz->rnk > 1); /* cannot split rnk <= 1 */ Chris@10: if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp)) Chris@10: return 0; Chris@10: *rp += 1; /* convert from dim. index to rank */ Chris@10: if (*rp >= sz->rnk) /* split must reduce rank */ Chris@10: return 0; Chris@10: return 1; Chris@10: } Chris@10: Chris@10: static int applicable0(const solver *ego_, const problem *p_, int *rp) Chris@10: { Chris@10: const problem_rdft *p = (const problem_rdft *) p_; Chris@10: const S *ego = (const S *)ego_; Chris@10: return (1 Chris@10: && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk) Chris@10: && p->sz->rnk >= 2 Chris@10: && picksplit(ego, p->sz, rp) Chris@10: ); Chris@10: } Chris@10: Chris@10: /* TODO: revise this. */ Chris@10: static int applicable(const solver *ego_, const problem *p_, Chris@10: const planner *plnr, int *rp) Chris@10: { Chris@10: const S *ego = (const S *)ego_; Chris@10: Chris@10: if (!applicable0(ego_, p_, rp)) return 0; Chris@10: Chris@10: if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) Chris@10: return 0; Chris@10: Chris@10: if (NO_UGLYP(plnr)) { Chris@10: /* Heuristic: if the vector stride is greater than the transform Chris@10: sz, don't use (prefer to do the vector loop first with a Chris@10: vrank-geq1 plan). */ Chris@10: const problem_rdft *p = (const problem_rdft *) p_; Chris@10: Chris@10: if (p->vecsz->rnk > 0 && Chris@10: X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz)) Chris@10: return 0; Chris@10: } Chris@10: Chris@10: return 1; Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: const problem_rdft *p; Chris@10: P *pln; Chris@10: plan *cld1 = 0, *cld2 = 0; Chris@10: tensor *sz1, *sz2, *vecszi, *sz2i; Chris@10: int spltrnk; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(rdft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (!applicable(ego_, p_, plnr, &spltrnk)) Chris@10: return (plan *) 0; Chris@10: Chris@10: p = (const problem_rdft *) p_; Chris@10: X(tensor_split)(p->sz, &sz1, spltrnk, &sz2); Chris@10: vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS); Chris@10: sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS); Chris@10: Chris@10: cld1 = X(mkplan_d)(plnr, Chris@10: X(mkproblem_rdft_d)(X(tensor_copy)(sz2), Chris@10: X(tensor_append)(p->vecsz, sz1), Chris@10: p->I, p->O, p->kind + spltrnk)); Chris@10: if (!cld1) goto nada; Chris@10: Chris@10: cld2 = X(mkplan_d)(plnr, Chris@10: X(mkproblem_rdft_d)( Chris@10: X(tensor_copy_inplace)(sz1, INPLACE_OS), Chris@10: X(tensor_append)(vecszi, sz2i), Chris@10: p->O, p->O, p->kind)); Chris@10: if (!cld2) goto nada; Chris@10: Chris@10: pln = MKPLAN_RDFT(P, &padt, apply); Chris@10: Chris@10: pln->cld1 = cld1; Chris@10: pln->cld2 = cld2; Chris@10: Chris@10: pln->solver = ego; Chris@10: X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); Chris@10: Chris@10: X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); Chris@10: Chris@10: return &(pln->super.super); Chris@10: Chris@10: nada: Chris@10: X(plan_destroy_internal)(cld2); Chris@10: X(plan_destroy_internal)(cld1); Chris@10: X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); Chris@10: return (plan *) 0; Chris@10: } Chris@10: Chris@10: static solver *mksolver(int spltrnk, const int *buddies, int nbuddies) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: slv->spltrnk = spltrnk; Chris@10: slv->buddies = buddies; Chris@10: slv->nbuddies = nbuddies; Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void X(rdft_rank_geq2_register)(planner *p) Chris@10: { Chris@10: int i; Chris@10: static const int buddies[] = { 1, 0, -2 }; Chris@10: Chris@10: const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0])); Chris@10: Chris@10: for (i = 0; i < nbuddies; ++i) Chris@10: REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies)); Chris@10: Chris@10: /* FIXME: Should we try more buddies? See also dft/rank-geq2. */ Chris@10: }