Chris@4
|
1 /* crc32.c -- compute the CRC-32 of a data stream
|
Chris@4
|
2 * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
|
Chris@4
|
3 * For conditions of distribution and use, see copyright notice in zlib.h
|
Chris@4
|
4 *
|
Chris@4
|
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
|
Chris@4
|
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
|
Chris@4
|
7 * tables for updating the shift register in one step with three exclusive-ors
|
Chris@4
|
8 * instead of four steps with four exclusive-ors. This results in about a
|
Chris@4
|
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
|
Chris@4
|
10 */
|
Chris@4
|
11
|
Chris@4
|
12 /* @(#) $Id$ */
|
Chris@4
|
13
|
Chris@4
|
14 /*
|
Chris@4
|
15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
|
Chris@4
|
16 protection on the static variables used to control the first-use generation
|
Chris@4
|
17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
|
Chris@4
|
18 first call get_crc_table() to initialize the tables before allowing more than
|
Chris@4
|
19 one thread to use crc32().
|
Chris@4
|
20
|
Chris@4
|
21 DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
|
Chris@4
|
22 */
|
Chris@4
|
23
|
Chris@4
|
24 #ifdef MAKECRCH
|
Chris@4
|
25 # include <stdio.h>
|
Chris@4
|
26 # ifndef DYNAMIC_CRC_TABLE
|
Chris@4
|
27 # define DYNAMIC_CRC_TABLE
|
Chris@4
|
28 # endif /* !DYNAMIC_CRC_TABLE */
|
Chris@4
|
29 #endif /* MAKECRCH */
|
Chris@4
|
30
|
Chris@4
|
31 #include "zutil.h" /* for STDC and FAR definitions */
|
Chris@4
|
32
|
Chris@4
|
33 #define local static
|
Chris@4
|
34
|
Chris@4
|
35 /* Definitions for doing the crc four data bytes at a time. */
|
Chris@4
|
36 #if !defined(NOBYFOUR) && defined(Z_U4)
|
Chris@4
|
37 # define BYFOUR
|
Chris@4
|
38 #endif
|
Chris@4
|
39 #ifdef BYFOUR
|
Chris@4
|
40 local unsigned long crc32_little OF((unsigned long,
|
Chris@4
|
41 const unsigned char FAR *, unsigned));
|
Chris@4
|
42 local unsigned long crc32_big OF((unsigned long,
|
Chris@4
|
43 const unsigned char FAR *, unsigned));
|
Chris@4
|
44 # define TBLS 8
|
Chris@4
|
45 #else
|
Chris@4
|
46 # define TBLS 1
|
Chris@4
|
47 #endif /* BYFOUR */
|
Chris@4
|
48
|
Chris@4
|
49 /* Local functions for crc concatenation */
|
Chris@4
|
50 local unsigned long gf2_matrix_times OF((unsigned long *mat,
|
Chris@4
|
51 unsigned long vec));
|
Chris@4
|
52 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
|
Chris@4
|
53 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
|
Chris@4
|
54
|
Chris@4
|
55
|
Chris@4
|
56 #ifdef DYNAMIC_CRC_TABLE
|
Chris@4
|
57
|
Chris@4
|
58 local volatile int crc_table_empty = 1;
|
Chris@4
|
59 local z_crc_t FAR crc_table[TBLS][256];
|
Chris@4
|
60 local void make_crc_table OF((void));
|
Chris@4
|
61 #ifdef MAKECRCH
|
Chris@4
|
62 local void write_table OF((FILE *, const z_crc_t FAR *));
|
Chris@4
|
63 #endif /* MAKECRCH */
|
Chris@4
|
64 /*
|
Chris@4
|
65 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
|
Chris@4
|
66 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
|
Chris@4
|
67
|
Chris@4
|
68 Polynomials over GF(2) are represented in binary, one bit per coefficient,
|
Chris@4
|
69 with the lowest powers in the most significant bit. Then adding polynomials
|
Chris@4
|
70 is just exclusive-or, and multiplying a polynomial by x is a right shift by
|
Chris@4
|
71 one. If we call the above polynomial p, and represent a byte as the
|
Chris@4
|
72 polynomial q, also with the lowest power in the most significant bit (so the
|
Chris@4
|
73 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
|
Chris@4
|
74 where a mod b means the remainder after dividing a by b.
|
Chris@4
|
75
|
Chris@4
|
76 This calculation is done using the shift-register method of multiplying and
|
Chris@4
|
77 taking the remainder. The register is initialized to zero, and for each
|
Chris@4
|
78 incoming bit, x^32 is added mod p to the register if the bit is a one (where
|
Chris@4
|
79 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
|
Chris@4
|
80 x (which is shifting right by one and adding x^32 mod p if the bit shifted
|
Chris@4
|
81 out is a one). We start with the highest power (least significant bit) of
|
Chris@4
|
82 q and repeat for all eight bits of q.
|
Chris@4
|
83
|
Chris@4
|
84 The first table is simply the CRC of all possible eight bit values. This is
|
Chris@4
|
85 all the information needed to generate CRCs on data a byte at a time for all
|
Chris@4
|
86 combinations of CRC register values and incoming bytes. The remaining tables
|
Chris@4
|
87 allow for word-at-a-time CRC calculation for both big-endian and little-
|
Chris@4
|
88 endian machines, where a word is four bytes.
|
Chris@4
|
89 */
|
Chris@4
|
90 local void make_crc_table()
|
Chris@4
|
91 {
|
Chris@4
|
92 z_crc_t c;
|
Chris@4
|
93 int n, k;
|
Chris@4
|
94 z_crc_t poly; /* polynomial exclusive-or pattern */
|
Chris@4
|
95 /* terms of polynomial defining this crc (except x^32): */
|
Chris@4
|
96 static volatile int first = 1; /* flag to limit concurrent making */
|
Chris@4
|
97 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
|
Chris@4
|
98
|
Chris@4
|
99 /* See if another task is already doing this (not thread-safe, but better
|
Chris@4
|
100 than nothing -- significantly reduces duration of vulnerability in
|
Chris@4
|
101 case the advice about DYNAMIC_CRC_TABLE is ignored) */
|
Chris@4
|
102 if (first) {
|
Chris@4
|
103 first = 0;
|
Chris@4
|
104
|
Chris@4
|
105 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
|
Chris@4
|
106 poly = 0;
|
Chris@4
|
107 for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
|
Chris@4
|
108 poly |= (z_crc_t)1 << (31 - p[n]);
|
Chris@4
|
109
|
Chris@4
|
110 /* generate a crc for every 8-bit value */
|
Chris@4
|
111 for (n = 0; n < 256; n++) {
|
Chris@4
|
112 c = (z_crc_t)n;
|
Chris@4
|
113 for (k = 0; k < 8; k++)
|
Chris@4
|
114 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
|
Chris@4
|
115 crc_table[0][n] = c;
|
Chris@4
|
116 }
|
Chris@4
|
117
|
Chris@4
|
118 #ifdef BYFOUR
|
Chris@4
|
119 /* generate crc for each value followed by one, two, and three zeros,
|
Chris@4
|
120 and then the byte reversal of those as well as the first table */
|
Chris@4
|
121 for (n = 0; n < 256; n++) {
|
Chris@4
|
122 c = crc_table[0][n];
|
Chris@4
|
123 crc_table[4][n] = ZSWAP32(c);
|
Chris@4
|
124 for (k = 1; k < 4; k++) {
|
Chris@4
|
125 c = crc_table[0][c & 0xff] ^ (c >> 8);
|
Chris@4
|
126 crc_table[k][n] = c;
|
Chris@4
|
127 crc_table[k + 4][n] = ZSWAP32(c);
|
Chris@4
|
128 }
|
Chris@4
|
129 }
|
Chris@4
|
130 #endif /* BYFOUR */
|
Chris@4
|
131
|
Chris@4
|
132 crc_table_empty = 0;
|
Chris@4
|
133 }
|
Chris@4
|
134 else { /* not first */
|
Chris@4
|
135 /* wait for the other guy to finish (not efficient, but rare) */
|
Chris@4
|
136 while (crc_table_empty)
|
Chris@4
|
137 ;
|
Chris@4
|
138 }
|
Chris@4
|
139
|
Chris@4
|
140 #ifdef MAKECRCH
|
Chris@4
|
141 /* write out CRC tables to crc32.h */
|
Chris@4
|
142 {
|
Chris@4
|
143 FILE *out;
|
Chris@4
|
144
|
Chris@4
|
145 out = fopen("crc32.h", "w");
|
Chris@4
|
146 if (out == NULL) return;
|
Chris@4
|
147 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
|
Chris@4
|
148 fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
|
Chris@4
|
149 fprintf(out, "local const z_crc_t FAR ");
|
Chris@4
|
150 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
|
Chris@4
|
151 write_table(out, crc_table[0]);
|
Chris@4
|
152 # ifdef BYFOUR
|
Chris@4
|
153 fprintf(out, "#ifdef BYFOUR\n");
|
Chris@4
|
154 for (k = 1; k < 8; k++) {
|
Chris@4
|
155 fprintf(out, " },\n {\n");
|
Chris@4
|
156 write_table(out, crc_table[k]);
|
Chris@4
|
157 }
|
Chris@4
|
158 fprintf(out, "#endif\n");
|
Chris@4
|
159 # endif /* BYFOUR */
|
Chris@4
|
160 fprintf(out, " }\n};\n");
|
Chris@4
|
161 fclose(out);
|
Chris@4
|
162 }
|
Chris@4
|
163 #endif /* MAKECRCH */
|
Chris@4
|
164 }
|
Chris@4
|
165
|
Chris@4
|
166 #ifdef MAKECRCH
|
Chris@4
|
167 local void write_table(out, table)
|
Chris@4
|
168 FILE *out;
|
Chris@4
|
169 const z_crc_t FAR *table;
|
Chris@4
|
170 {
|
Chris@4
|
171 int n;
|
Chris@4
|
172
|
Chris@4
|
173 for (n = 0; n < 256; n++)
|
Chris@4
|
174 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ",
|
Chris@4
|
175 (unsigned long)(table[n]),
|
Chris@4
|
176 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
|
Chris@4
|
177 }
|
Chris@4
|
178 #endif /* MAKECRCH */
|
Chris@4
|
179
|
Chris@4
|
180 #else /* !DYNAMIC_CRC_TABLE */
|
Chris@4
|
181 /* ========================================================================
|
Chris@4
|
182 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
|
Chris@4
|
183 */
|
Chris@4
|
184 #include "crc32.h"
|
Chris@4
|
185 #endif /* DYNAMIC_CRC_TABLE */
|
Chris@4
|
186
|
Chris@4
|
187 /* =========================================================================
|
Chris@4
|
188 * This function can be used by asm versions of crc32()
|
Chris@4
|
189 */
|
Chris@4
|
190 const z_crc_t FAR * ZEXPORT get_crc_table()
|
Chris@4
|
191 {
|
Chris@4
|
192 #ifdef DYNAMIC_CRC_TABLE
|
Chris@4
|
193 if (crc_table_empty)
|
Chris@4
|
194 make_crc_table();
|
Chris@4
|
195 #endif /* DYNAMIC_CRC_TABLE */
|
Chris@4
|
196 return (const z_crc_t FAR *)crc_table;
|
Chris@4
|
197 }
|
Chris@4
|
198
|
Chris@4
|
199 /* ========================================================================= */
|
Chris@4
|
200 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
|
Chris@4
|
201 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
|
Chris@4
|
202
|
Chris@4
|
203 /* ========================================================================= */
|
Chris@4
|
204 unsigned long ZEXPORT crc32(crc, buf, len)
|
Chris@4
|
205 unsigned long crc;
|
Chris@4
|
206 const unsigned char FAR *buf;
|
Chris@4
|
207 uInt len;
|
Chris@4
|
208 {
|
Chris@4
|
209 if (buf == Z_NULL) return 0UL;
|
Chris@4
|
210
|
Chris@4
|
211 #ifdef DYNAMIC_CRC_TABLE
|
Chris@4
|
212 if (crc_table_empty)
|
Chris@4
|
213 make_crc_table();
|
Chris@4
|
214 #endif /* DYNAMIC_CRC_TABLE */
|
Chris@4
|
215
|
Chris@4
|
216 #ifdef BYFOUR
|
Chris@4
|
217 if (sizeof(void *) == sizeof(ptrdiff_t)) {
|
Chris@4
|
218 z_crc_t endian;
|
Chris@4
|
219
|
Chris@4
|
220 endian = 1;
|
Chris@4
|
221 if (*((unsigned char *)(&endian)))
|
Chris@4
|
222 return crc32_little(crc, buf, len);
|
Chris@4
|
223 else
|
Chris@4
|
224 return crc32_big(crc, buf, len);
|
Chris@4
|
225 }
|
Chris@4
|
226 #endif /* BYFOUR */
|
Chris@4
|
227 crc = crc ^ 0xffffffffUL;
|
Chris@4
|
228 while (len >= 8) {
|
Chris@4
|
229 DO8;
|
Chris@4
|
230 len -= 8;
|
Chris@4
|
231 }
|
Chris@4
|
232 if (len) do {
|
Chris@4
|
233 DO1;
|
Chris@4
|
234 } while (--len);
|
Chris@4
|
235 return crc ^ 0xffffffffUL;
|
Chris@4
|
236 }
|
Chris@4
|
237
|
Chris@4
|
238 #ifdef BYFOUR
|
Chris@4
|
239
|
Chris@4
|
240 /* ========================================================================= */
|
Chris@4
|
241 #define DOLIT4 c ^= *buf4++; \
|
Chris@4
|
242 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
|
Chris@4
|
243 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
|
Chris@4
|
244 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
|
Chris@4
|
245
|
Chris@4
|
246 /* ========================================================================= */
|
Chris@4
|
247 local unsigned long crc32_little(crc, buf, len)
|
Chris@4
|
248 unsigned long crc;
|
Chris@4
|
249 const unsigned char FAR *buf;
|
Chris@4
|
250 unsigned len;
|
Chris@4
|
251 {
|
Chris@4
|
252 register z_crc_t c;
|
Chris@4
|
253 register const z_crc_t FAR *buf4;
|
Chris@4
|
254
|
Chris@4
|
255 c = (z_crc_t)crc;
|
Chris@4
|
256 c = ~c;
|
Chris@4
|
257 while (len && ((ptrdiff_t)buf & 3)) {
|
Chris@4
|
258 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
|
Chris@4
|
259 len--;
|
Chris@4
|
260 }
|
Chris@4
|
261
|
Chris@4
|
262 buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
|
Chris@4
|
263 while (len >= 32) {
|
Chris@4
|
264 DOLIT32;
|
Chris@4
|
265 len -= 32;
|
Chris@4
|
266 }
|
Chris@4
|
267 while (len >= 4) {
|
Chris@4
|
268 DOLIT4;
|
Chris@4
|
269 len -= 4;
|
Chris@4
|
270 }
|
Chris@4
|
271 buf = (const unsigned char FAR *)buf4;
|
Chris@4
|
272
|
Chris@4
|
273 if (len) do {
|
Chris@4
|
274 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
|
Chris@4
|
275 } while (--len);
|
Chris@4
|
276 c = ~c;
|
Chris@4
|
277 return (unsigned long)c;
|
Chris@4
|
278 }
|
Chris@4
|
279
|
Chris@4
|
280 /* ========================================================================= */
|
Chris@4
|
281 #define DOBIG4 c ^= *++buf4; \
|
Chris@4
|
282 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
|
Chris@4
|
283 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
|
Chris@4
|
284 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
|
Chris@4
|
285
|
Chris@4
|
286 /* ========================================================================= */
|
Chris@4
|
287 local unsigned long crc32_big(crc, buf, len)
|
Chris@4
|
288 unsigned long crc;
|
Chris@4
|
289 const unsigned char FAR *buf;
|
Chris@4
|
290 unsigned len;
|
Chris@4
|
291 {
|
Chris@4
|
292 register z_crc_t c;
|
Chris@4
|
293 register const z_crc_t FAR *buf4;
|
Chris@4
|
294
|
Chris@4
|
295 c = ZSWAP32((z_crc_t)crc);
|
Chris@4
|
296 c = ~c;
|
Chris@4
|
297 while (len && ((ptrdiff_t)buf & 3)) {
|
Chris@4
|
298 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
|
Chris@4
|
299 len--;
|
Chris@4
|
300 }
|
Chris@4
|
301
|
Chris@4
|
302 buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
|
Chris@4
|
303 buf4--;
|
Chris@4
|
304 while (len >= 32) {
|
Chris@4
|
305 DOBIG32;
|
Chris@4
|
306 len -= 32;
|
Chris@4
|
307 }
|
Chris@4
|
308 while (len >= 4) {
|
Chris@4
|
309 DOBIG4;
|
Chris@4
|
310 len -= 4;
|
Chris@4
|
311 }
|
Chris@4
|
312 buf4++;
|
Chris@4
|
313 buf = (const unsigned char FAR *)buf4;
|
Chris@4
|
314
|
Chris@4
|
315 if (len) do {
|
Chris@4
|
316 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
|
Chris@4
|
317 } while (--len);
|
Chris@4
|
318 c = ~c;
|
Chris@4
|
319 return (unsigned long)(ZSWAP32(c));
|
Chris@4
|
320 }
|
Chris@4
|
321
|
Chris@4
|
322 #endif /* BYFOUR */
|
Chris@4
|
323
|
Chris@4
|
324 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
|
Chris@4
|
325
|
Chris@4
|
326 /* ========================================================================= */
|
Chris@4
|
327 local unsigned long gf2_matrix_times(mat, vec)
|
Chris@4
|
328 unsigned long *mat;
|
Chris@4
|
329 unsigned long vec;
|
Chris@4
|
330 {
|
Chris@4
|
331 unsigned long sum;
|
Chris@4
|
332
|
Chris@4
|
333 sum = 0;
|
Chris@4
|
334 while (vec) {
|
Chris@4
|
335 if (vec & 1)
|
Chris@4
|
336 sum ^= *mat;
|
Chris@4
|
337 vec >>= 1;
|
Chris@4
|
338 mat++;
|
Chris@4
|
339 }
|
Chris@4
|
340 return sum;
|
Chris@4
|
341 }
|
Chris@4
|
342
|
Chris@4
|
343 /* ========================================================================= */
|
Chris@4
|
344 local void gf2_matrix_square(square, mat)
|
Chris@4
|
345 unsigned long *square;
|
Chris@4
|
346 unsigned long *mat;
|
Chris@4
|
347 {
|
Chris@4
|
348 int n;
|
Chris@4
|
349
|
Chris@4
|
350 for (n = 0; n < GF2_DIM; n++)
|
Chris@4
|
351 square[n] = gf2_matrix_times(mat, mat[n]);
|
Chris@4
|
352 }
|
Chris@4
|
353
|
Chris@4
|
354 /* ========================================================================= */
|
Chris@4
|
355 local uLong crc32_combine_(crc1, crc2, len2)
|
Chris@4
|
356 uLong crc1;
|
Chris@4
|
357 uLong crc2;
|
Chris@4
|
358 z_off64_t len2;
|
Chris@4
|
359 {
|
Chris@4
|
360 int n;
|
Chris@4
|
361 unsigned long row;
|
Chris@4
|
362 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
|
Chris@4
|
363 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
|
Chris@4
|
364
|
Chris@4
|
365 /* degenerate case (also disallow negative lengths) */
|
Chris@4
|
366 if (len2 <= 0)
|
Chris@4
|
367 return crc1;
|
Chris@4
|
368
|
Chris@4
|
369 /* put operator for one zero bit in odd */
|
Chris@4
|
370 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
|
Chris@4
|
371 row = 1;
|
Chris@4
|
372 for (n = 1; n < GF2_DIM; n++) {
|
Chris@4
|
373 odd[n] = row;
|
Chris@4
|
374 row <<= 1;
|
Chris@4
|
375 }
|
Chris@4
|
376
|
Chris@4
|
377 /* put operator for two zero bits in even */
|
Chris@4
|
378 gf2_matrix_square(even, odd);
|
Chris@4
|
379
|
Chris@4
|
380 /* put operator for four zero bits in odd */
|
Chris@4
|
381 gf2_matrix_square(odd, even);
|
Chris@4
|
382
|
Chris@4
|
383 /* apply len2 zeros to crc1 (first square will put the operator for one
|
Chris@4
|
384 zero byte, eight zero bits, in even) */
|
Chris@4
|
385 do {
|
Chris@4
|
386 /* apply zeros operator for this bit of len2 */
|
Chris@4
|
387 gf2_matrix_square(even, odd);
|
Chris@4
|
388 if (len2 & 1)
|
Chris@4
|
389 crc1 = gf2_matrix_times(even, crc1);
|
Chris@4
|
390 len2 >>= 1;
|
Chris@4
|
391
|
Chris@4
|
392 /* if no more bits set, then done */
|
Chris@4
|
393 if (len2 == 0)
|
Chris@4
|
394 break;
|
Chris@4
|
395
|
Chris@4
|
396 /* another iteration of the loop with odd and even swapped */
|
Chris@4
|
397 gf2_matrix_square(odd, even);
|
Chris@4
|
398 if (len2 & 1)
|
Chris@4
|
399 crc1 = gf2_matrix_times(odd, crc1);
|
Chris@4
|
400 len2 >>= 1;
|
Chris@4
|
401
|
Chris@4
|
402 /* if no more bits set, then done */
|
Chris@4
|
403 } while (len2 != 0);
|
Chris@4
|
404
|
Chris@4
|
405 /* return combined crc */
|
Chris@4
|
406 crc1 ^= crc2;
|
Chris@4
|
407 return crc1;
|
Chris@4
|
408 }
|
Chris@4
|
409
|
Chris@4
|
410 /* ========================================================================= */
|
Chris@4
|
411 uLong ZEXPORT crc32_combine(crc1, crc2, len2)
|
Chris@4
|
412 uLong crc1;
|
Chris@4
|
413 uLong crc2;
|
Chris@4
|
414 z_off_t len2;
|
Chris@4
|
415 {
|
Chris@4
|
416 return crc32_combine_(crc1, crc2, len2);
|
Chris@4
|
417 }
|
Chris@4
|
418
|
Chris@4
|
419 uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
|
Chris@4
|
420 uLong crc1;
|
Chris@4
|
421 uLong crc2;
|
Chris@4
|
422 z_off64_t len2;
|
Chris@4
|
423 {
|
Chris@4
|
424 return crc32_combine_(crc1, crc2, len2);
|
Chris@4
|
425 }
|