annotate src/opus-1.3/silk/fixed/noise_shape_analysis_FIX.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /***********************************************************************
cannam@154 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
cannam@154 3 Redistribution and use in source and binary forms, with or without
cannam@154 4 modification, are permitted provided that the following conditions
cannam@154 5 are met:
cannam@154 6 - Redistributions of source code must retain the above copyright notice,
cannam@154 7 this list of conditions and the following disclaimer.
cannam@154 8 - Redistributions in binary form must reproduce the above copyright
cannam@154 9 notice, this list of conditions and the following disclaimer in the
cannam@154 10 documentation and/or other materials provided with the distribution.
cannam@154 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
cannam@154 12 names of specific contributors, may be used to endorse or promote
cannam@154 13 products derived from this software without specific prior written
cannam@154 14 permission.
cannam@154 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
cannam@154 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
cannam@154 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
cannam@154 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
cannam@154 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
cannam@154 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
cannam@154 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
cannam@154 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
cannam@154 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
cannam@154 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
cannam@154 25 POSSIBILITY OF SUCH DAMAGE.
cannam@154 26 ***********************************************************************/
cannam@154 27
cannam@154 28 #ifdef HAVE_CONFIG_H
cannam@154 29 #include "config.h"
cannam@154 30 #endif
cannam@154 31
cannam@154 32 #include "main_FIX.h"
cannam@154 33 #include "stack_alloc.h"
cannam@154 34 #include "tuning_parameters.h"
cannam@154 35
cannam@154 36 /* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */
cannam@154 37 /* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */
cannam@154 38 /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */
cannam@154 39 /* coefficient in an array of coefficients, for monic filters. */
cannam@154 40 static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/
cannam@154 41 const opus_int32 *coefs_Q24,
cannam@154 42 opus_int lambda_Q16,
cannam@154 43 opus_int order
cannam@154 44 ) {
cannam@154 45 opus_int i;
cannam@154 46 opus_int32 gain_Q24;
cannam@154 47
cannam@154 48 lambda_Q16 = -lambda_Q16;
cannam@154 49 gain_Q24 = coefs_Q24[ order - 1 ];
cannam@154 50 for( i = order - 2; i >= 0; i-- ) {
cannam@154 51 gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 );
cannam@154 52 }
cannam@154 53 gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 );
cannam@154 54 return silk_INVERSE32_varQ( gain_Q24, 40 );
cannam@154 55 }
cannam@154 56
cannam@154 57 /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */
cannam@154 58 /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
cannam@154 59 static OPUS_INLINE void limit_warped_coefs(
cannam@154 60 opus_int32 *coefs_Q24,
cannam@154 61 opus_int lambda_Q16,
cannam@154 62 opus_int32 limit_Q24,
cannam@154 63 opus_int order
cannam@154 64 ) {
cannam@154 65 opus_int i, iter, ind = 0;
cannam@154 66 opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_Q16;
cannam@154 67 opus_int32 nom_Q16, den_Q24;
cannam@154 68 opus_int32 limit_Q20, maxabs_Q20;
cannam@154 69
cannam@154 70 /* Convert to monic coefficients */
cannam@154 71 lambda_Q16 = -lambda_Q16;
cannam@154 72 for( i = order - 1; i > 0; i-- ) {
cannam@154 73 coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 );
cannam@154 74 }
cannam@154 75 lambda_Q16 = -lambda_Q16;
cannam@154 76 nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 );
cannam@154 77 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 );
cannam@154 78 gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
cannam@154 79 for( i = 0; i < order; i++ ) {
cannam@154 80 coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] );
cannam@154 81 }
cannam@154 82 limit_Q20 = silk_RSHIFT(limit_Q24, 4);
cannam@154 83 for( iter = 0; iter < 10; iter++ ) {
cannam@154 84 /* Find maximum absolute value */
cannam@154 85 maxabs_Q24 = -1;
cannam@154 86 for( i = 0; i < order; i++ ) {
cannam@154 87 tmp = silk_abs_int32( coefs_Q24[ i ] );
cannam@154 88 if( tmp > maxabs_Q24 ) {
cannam@154 89 maxabs_Q24 = tmp;
cannam@154 90 ind = i;
cannam@154 91 }
cannam@154 92 }
cannam@154 93 /* Use Q20 to avoid any overflow when multiplying by (ind + 1) later. */
cannam@154 94 maxabs_Q20 = silk_RSHIFT(maxabs_Q24, 4);
cannam@154 95 if( maxabs_Q20 <= limit_Q20 ) {
cannam@154 96 /* Coefficients are within range - done */
cannam@154 97 return;
cannam@154 98 }
cannam@154 99
cannam@154 100 /* Convert back to true warped coefficients */
cannam@154 101 for( i = 1; i < order; i++ ) {
cannam@154 102 coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 );
cannam@154 103 }
cannam@154 104 gain_Q16 = silk_INVERSE32_varQ( gain_Q16, 32 );
cannam@154 105 for( i = 0; i < order; i++ ) {
cannam@154 106 coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] );
cannam@154 107 }
cannam@154 108
cannam@154 109 /* Apply bandwidth expansion */
cannam@154 110 chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ(
cannam@154 111 silk_SMULWB( maxabs_Q20 - limit_Q20, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ),
cannam@154 112 silk_MUL( maxabs_Q20, ind + 1 ), 22 );
cannam@154 113 silk_bwexpander_32( coefs_Q24, order, chirp_Q16 );
cannam@154 114
cannam@154 115 /* Convert to monic warped coefficients */
cannam@154 116 lambda_Q16 = -lambda_Q16;
cannam@154 117 for( i = order - 1; i > 0; i-- ) {
cannam@154 118 coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 );
cannam@154 119 }
cannam@154 120 lambda_Q16 = -lambda_Q16;
cannam@154 121 nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 );
cannam@154 122 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 );
cannam@154 123 gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
cannam@154 124 for( i = 0; i < order; i++ ) {
cannam@154 125 coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] );
cannam@154 126 }
cannam@154 127 }
cannam@154 128 silk_assert( 0 );
cannam@154 129 }
cannam@154 130
cannam@154 131 /* Disable MIPS version until it's updated. */
cannam@154 132 #if 0 && defined(MIPSr1_ASM)
cannam@154 133 #include "mips/noise_shape_analysis_FIX_mipsr1.h"
cannam@154 134 #endif
cannam@154 135
cannam@154 136 /**************************************************************/
cannam@154 137 /* Compute noise shaping coefficients and initial gain values */
cannam@154 138 /**************************************************************/
cannam@154 139 #ifndef OVERRIDE_silk_noise_shape_analysis_FIX
cannam@154 140 void silk_noise_shape_analysis_FIX(
cannam@154 141 silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */
cannam@154 142 silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */
cannam@154 143 const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */
cannam@154 144 const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */
cannam@154 145 int arch /* I Run-time architecture */
cannam@154 146 )
cannam@154 147 {
cannam@154 148 silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
cannam@154 149 opus_int k, i, nSamples, nSegs, Qnrg, b_Q14, warping_Q16, scale = 0;
cannam@154 150 opus_int32 SNR_adj_dB_Q7, HarmShapeGain_Q16, Tilt_Q16, tmp32;
cannam@154 151 opus_int32 nrg, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
cannam@154 152 opus_int32 BWExp_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
cannam@154 153 opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
cannam@154 154 opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
cannam@154 155 opus_int32 AR_Q24[ MAX_SHAPE_LPC_ORDER ];
cannam@154 156 VARDECL( opus_int16, x_windowed );
cannam@154 157 const opus_int16 *x_ptr, *pitch_res_ptr;
cannam@154 158 SAVE_STACK;
cannam@154 159
cannam@154 160 /* Point to start of first LPC analysis block */
cannam@154 161 x_ptr = x - psEnc->sCmn.la_shape;
cannam@154 162
cannam@154 163 /****************/
cannam@154 164 /* GAIN CONTROL */
cannam@154 165 /****************/
cannam@154 166 SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
cannam@154 167
cannam@154 168 /* Input quality is the average of the quality in the lowest two VAD bands */
cannam@154 169 psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
cannam@154 170 + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
cannam@154 171
cannam@154 172 /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
cannam@154 173 psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
cannam@154 174 SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
cannam@154 175
cannam@154 176 /* Reduce coding SNR during low speech activity */
cannam@154 177 if( psEnc->sCmn.useCBR == 0 ) {
cannam@154 178 b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
cannam@154 179 b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
cannam@154 180 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
cannam@154 181 silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/
cannam@154 182 silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/
cannam@154 183 }
cannam@154 184
cannam@154 185 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
cannam@154 186 /* Reduce gains for periodic signals */
cannam@154 187 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
cannam@154 188 } else {
cannam@154 189 /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
cannam@154 190 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
cannam@154 191 silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
cannam@154 192 SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
cannam@154 193 }
cannam@154 194
cannam@154 195 /*************************/
cannam@154 196 /* SPARSENESS PROCESSING */
cannam@154 197 /*************************/
cannam@154 198 /* Set quantizer offset */
cannam@154 199 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
cannam@154 200 /* Initially set to 0; may be overruled in process_gains(..) */
cannam@154 201 psEnc->sCmn.indices.quantOffsetType = 0;
cannam@154 202 } else {
cannam@154 203 /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
cannam@154 204 nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
cannam@154 205 energy_variation_Q7 = 0;
cannam@154 206 log_energy_prev_Q7 = 0;
cannam@154 207 pitch_res_ptr = pitch_res;
cannam@154 208 nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2;
cannam@154 209 for( k = 0; k < nSegs; k++ ) {
cannam@154 210 silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
cannam@154 211 nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/
cannam@154 212
cannam@154 213 log_energy_Q7 = silk_lin2log( nrg );
cannam@154 214 if( k > 0 ) {
cannam@154 215 energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
cannam@154 216 }
cannam@154 217 log_energy_prev_Q7 = log_energy_Q7;
cannam@154 218 pitch_res_ptr += nSamples;
cannam@154 219 }
cannam@154 220
cannam@154 221 /* Set quantization offset depending on sparseness measure */
cannam@154 222 if( energy_variation_Q7 > SILK_FIX_CONST( ENERGY_VARIATION_THRESHOLD_QNT_OFFSET, 7 ) * (nSegs-1) ) {
cannam@154 223 psEnc->sCmn.indices.quantOffsetType = 0;
cannam@154 224 } else {
cannam@154 225 psEnc->sCmn.indices.quantOffsetType = 1;
cannam@154 226 }
cannam@154 227 }
cannam@154 228
cannam@154 229 /*******************************/
cannam@154 230 /* Control bandwidth expansion */
cannam@154 231 /*******************************/
cannam@154 232 /* More BWE for signals with high prediction gain */
cannam@154 233 strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
cannam@154 234 BWExp_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
cannam@154 235 silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
cannam@154 236
cannam@154 237 if( psEnc->sCmn.warping_Q16 > 0 ) {
cannam@154 238 /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
cannam@154 239 warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
cannam@154 240 } else {
cannam@154 241 warping_Q16 = 0;
cannam@154 242 }
cannam@154 243
cannam@154 244 /********************************************/
cannam@154 245 /* Compute noise shaping AR coefs and gains */
cannam@154 246 /********************************************/
cannam@154 247 ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 );
cannam@154 248 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
cannam@154 249 /* Apply window: sine slope followed by flat part followed by cosine slope */
cannam@154 250 opus_int shift, slope_part, flat_part;
cannam@154 251 flat_part = psEnc->sCmn.fs_kHz * 3;
cannam@154 252 slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
cannam@154 253
cannam@154 254 silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
cannam@154 255 shift = slope_part;
cannam@154 256 silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
cannam@154 257 shift += flat_part;
cannam@154 258 silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
cannam@154 259
cannam@154 260 /* Update pointer: next LPC analysis block */
cannam@154 261 x_ptr += psEnc->sCmn.subfr_length;
cannam@154 262
cannam@154 263 if( psEnc->sCmn.warping_Q16 > 0 ) {
cannam@154 264 /* Calculate warped auto correlation */
cannam@154 265 silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch );
cannam@154 266 } else {
cannam@154 267 /* Calculate regular auto correlation */
cannam@154 268 silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch );
cannam@154 269 }
cannam@154 270
cannam@154 271 /* Add white noise, as a fraction of energy */
cannam@154 272 auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
cannam@154 273 SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
cannam@154 274
cannam@154 275 /* Calculate the reflection coefficients using schur */
cannam@154 276 nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
cannam@154 277 silk_assert( nrg >= 0 );
cannam@154 278
cannam@154 279 /* Convert reflection coefficients to prediction coefficients */
cannam@154 280 silk_k2a_Q16( AR_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
cannam@154 281
cannam@154 282 Qnrg = -scale; /* range: -12...30*/
cannam@154 283 silk_assert( Qnrg >= -12 );
cannam@154 284 silk_assert( Qnrg <= 30 );
cannam@154 285
cannam@154 286 /* Make sure that Qnrg is an even number */
cannam@154 287 if( Qnrg & 1 ) {
cannam@154 288 Qnrg -= 1;
cannam@154 289 nrg >>= 1;
cannam@154 290 }
cannam@154 291
cannam@154 292 tmp32 = silk_SQRT_APPROX( nrg );
cannam@154 293 Qnrg >>= 1; /* range: -6...15*/
cannam@154 294
cannam@154 295 psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg );
cannam@154 296
cannam@154 297 if( psEnc->sCmn.warping_Q16 > 0 ) {
cannam@154 298 /* Adjust gain for warping */
cannam@154 299 gain_mult_Q16 = warped_gain( AR_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
cannam@154 300 silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 );
cannam@154 301 if( psEncCtrl->Gains_Q16[ k ] < SILK_FIX_CONST( 0.25, 16 ) ) {
cannam@154 302 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
cannam@154 303 } else {
cannam@154 304 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 );
cannam@154 305 if ( psEncCtrl->Gains_Q16[ k ] >= ( silk_int32_MAX >> 1 ) ) {
cannam@154 306 psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
cannam@154 307 } else {
cannam@154 308 psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT32( psEncCtrl->Gains_Q16[ k ], 1 );
cannam@154 309 }
cannam@154 310 }
cannam@154 311 silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 );
cannam@154 312 }
cannam@154 313
cannam@154 314 /* Bandwidth expansion */
cannam@154 315 silk_bwexpander_32( AR_Q24, psEnc->sCmn.shapingLPCOrder, BWExp_Q16 );
cannam@154 316
cannam@154 317 if( psEnc->sCmn.warping_Q16 > 0 ) {
cannam@154 318 /* Convert to monic warped prediction coefficients and limit absolute values */
cannam@154 319 limit_warped_coefs( AR_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
cannam@154 320
cannam@154 321 /* Convert from Q24 to Q13 and store in int16 */
cannam@154 322 for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
cannam@154 323 psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR_Q24[ i ], 11 ) );
cannam@154 324 }
cannam@154 325 } else {
cannam@154 326 silk_LPC_fit( &psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER ], AR_Q24, 13, 24, psEnc->sCmn.shapingLPCOrder );
cannam@154 327 }
cannam@154 328 }
cannam@154 329
cannam@154 330 /*****************/
cannam@154 331 /* Gain tweaking */
cannam@154 332 /*****************/
cannam@154 333 /* Increase gains during low speech activity and put lower limit on gains */
cannam@154 334 gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
cannam@154 335 gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
cannam@154 336 silk_assert( gain_mult_Q16 > 0 );
cannam@154 337 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
cannam@154 338 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
cannam@154 339 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
cannam@154 340 psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
cannam@154 341 }
cannam@154 342
cannam@154 343
cannam@154 344 /************************************************/
cannam@154 345 /* Control low-frequency shaping and noise tilt */
cannam@154 346 /************************************************/
cannam@154 347 /* Less low frequency shaping for noisy inputs */
cannam@154 348 strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
cannam@154 349 SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
cannam@154 350 strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
cannam@154 351 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
cannam@154 352 /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
cannam@154 353 /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
cannam@154 354 opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
cannam@154 355 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
cannam@154 356 b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
cannam@154 357 /* Pack two coefficients in one int32 */
cannam@154 358 psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
cannam@154 359 psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
cannam@154 360 }
cannam@154 361 silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
cannam@154 362 Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
cannam@154 363 silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
cannam@154 364 silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
cannam@154 365 } else {
cannam@154 366 b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
cannam@154 367 /* Pack two coefficients in one int32 */
cannam@154 368 psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
cannam@154 369 silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
cannam@154 370 psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
cannam@154 371 for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
cannam@154 372 psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
cannam@154 373 }
cannam@154 374 Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
cannam@154 375 }
cannam@154 376
cannam@154 377 /****************************/
cannam@154 378 /* HARMONIC SHAPING CONTROL */
cannam@154 379 /****************************/
cannam@154 380 if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
cannam@154 381 /* More harmonic noise shaping for high bitrates or noisy input */
cannam@154 382 HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
cannam@154 383 SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
cannam@154 384 psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
cannam@154 385
cannam@154 386 /* Less harmonic noise shaping for less periodic signals */
cannam@154 387 HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
cannam@154 388 silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
cannam@154 389 } else {
cannam@154 390 HarmShapeGain_Q16 = 0;
cannam@154 391 }
cannam@154 392
cannam@154 393 /*************************/
cannam@154 394 /* Smooth over subframes */
cannam@154 395 /*************************/
cannam@154 396 for( k = 0; k < MAX_NB_SUBFR; k++ ) {
cannam@154 397 psShapeSt->HarmShapeGain_smth_Q16 =
cannam@154 398 silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
cannam@154 399 psShapeSt->Tilt_smth_Q16 =
cannam@154 400 silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
cannam@154 401
cannam@154 402 psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
cannam@154 403 psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 );
cannam@154 404 }
cannam@154 405 RESTORE_STACK;
cannam@154 406 }
cannam@154 407 #endif /* OVERRIDE_silk_noise_shape_analysis_FIX */