cannam@154
|
1 /***********************************************************************
|
cannam@154
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
cannam@154
|
3 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
4 modification, are permitted provided that the following conditions
|
cannam@154
|
5 are met:
|
cannam@154
|
6 - Redistributions of source code must retain the above copyright notice,
|
cannam@154
|
7 this list of conditions and the following disclaimer.
|
cannam@154
|
8 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
10 documentation and/or other materials provided with the distribution.
|
cannam@154
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
|
cannam@154
|
12 names of specific contributors, may be used to endorse or promote
|
cannam@154
|
13 products derived from this software without specific prior written
|
cannam@154
|
14 permission.
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
cannam@154
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
cannam@154
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
cannam@154
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
cannam@154
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
cannam@154
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
cannam@154
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
cannam@154
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
cannam@154
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
cannam@154
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
cannam@154
|
25 POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 ***********************************************************************/
|
cannam@154
|
27
|
cannam@154
|
28 #ifdef HAVE_CONFIG_H
|
cannam@154
|
29 #include "config.h"
|
cannam@154
|
30 #endif
|
cannam@154
|
31
|
cannam@154
|
32 #include "main_FIX.h"
|
cannam@154
|
33 #include "stack_alloc.h"
|
cannam@154
|
34 #include "tuning_parameters.h"
|
cannam@154
|
35
|
cannam@154
|
36 /* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */
|
cannam@154
|
37 /* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */
|
cannam@154
|
38 /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */
|
cannam@154
|
39 /* coefficient in an array of coefficients, for monic filters. */
|
cannam@154
|
40 static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/
|
cannam@154
|
41 const opus_int32 *coefs_Q24,
|
cannam@154
|
42 opus_int lambda_Q16,
|
cannam@154
|
43 opus_int order
|
cannam@154
|
44 ) {
|
cannam@154
|
45 opus_int i;
|
cannam@154
|
46 opus_int32 gain_Q24;
|
cannam@154
|
47
|
cannam@154
|
48 lambda_Q16 = -lambda_Q16;
|
cannam@154
|
49 gain_Q24 = coefs_Q24[ order - 1 ];
|
cannam@154
|
50 for( i = order - 2; i >= 0; i-- ) {
|
cannam@154
|
51 gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 );
|
cannam@154
|
52 }
|
cannam@154
|
53 gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 );
|
cannam@154
|
54 return silk_INVERSE32_varQ( gain_Q24, 40 );
|
cannam@154
|
55 }
|
cannam@154
|
56
|
cannam@154
|
57 /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */
|
cannam@154
|
58 /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
|
cannam@154
|
59 static OPUS_INLINE void limit_warped_coefs(
|
cannam@154
|
60 opus_int32 *coefs_Q24,
|
cannam@154
|
61 opus_int lambda_Q16,
|
cannam@154
|
62 opus_int32 limit_Q24,
|
cannam@154
|
63 opus_int order
|
cannam@154
|
64 ) {
|
cannam@154
|
65 opus_int i, iter, ind = 0;
|
cannam@154
|
66 opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_Q16;
|
cannam@154
|
67 opus_int32 nom_Q16, den_Q24;
|
cannam@154
|
68 opus_int32 limit_Q20, maxabs_Q20;
|
cannam@154
|
69
|
cannam@154
|
70 /* Convert to monic coefficients */
|
cannam@154
|
71 lambda_Q16 = -lambda_Q16;
|
cannam@154
|
72 for( i = order - 1; i > 0; i-- ) {
|
cannam@154
|
73 coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 );
|
cannam@154
|
74 }
|
cannam@154
|
75 lambda_Q16 = -lambda_Q16;
|
cannam@154
|
76 nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 );
|
cannam@154
|
77 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 );
|
cannam@154
|
78 gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
|
cannam@154
|
79 for( i = 0; i < order; i++ ) {
|
cannam@154
|
80 coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] );
|
cannam@154
|
81 }
|
cannam@154
|
82 limit_Q20 = silk_RSHIFT(limit_Q24, 4);
|
cannam@154
|
83 for( iter = 0; iter < 10; iter++ ) {
|
cannam@154
|
84 /* Find maximum absolute value */
|
cannam@154
|
85 maxabs_Q24 = -1;
|
cannam@154
|
86 for( i = 0; i < order; i++ ) {
|
cannam@154
|
87 tmp = silk_abs_int32( coefs_Q24[ i ] );
|
cannam@154
|
88 if( tmp > maxabs_Q24 ) {
|
cannam@154
|
89 maxabs_Q24 = tmp;
|
cannam@154
|
90 ind = i;
|
cannam@154
|
91 }
|
cannam@154
|
92 }
|
cannam@154
|
93 /* Use Q20 to avoid any overflow when multiplying by (ind + 1) later. */
|
cannam@154
|
94 maxabs_Q20 = silk_RSHIFT(maxabs_Q24, 4);
|
cannam@154
|
95 if( maxabs_Q20 <= limit_Q20 ) {
|
cannam@154
|
96 /* Coefficients are within range - done */
|
cannam@154
|
97 return;
|
cannam@154
|
98 }
|
cannam@154
|
99
|
cannam@154
|
100 /* Convert back to true warped coefficients */
|
cannam@154
|
101 for( i = 1; i < order; i++ ) {
|
cannam@154
|
102 coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 );
|
cannam@154
|
103 }
|
cannam@154
|
104 gain_Q16 = silk_INVERSE32_varQ( gain_Q16, 32 );
|
cannam@154
|
105 for( i = 0; i < order; i++ ) {
|
cannam@154
|
106 coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] );
|
cannam@154
|
107 }
|
cannam@154
|
108
|
cannam@154
|
109 /* Apply bandwidth expansion */
|
cannam@154
|
110 chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ(
|
cannam@154
|
111 silk_SMULWB( maxabs_Q20 - limit_Q20, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ),
|
cannam@154
|
112 silk_MUL( maxabs_Q20, ind + 1 ), 22 );
|
cannam@154
|
113 silk_bwexpander_32( coefs_Q24, order, chirp_Q16 );
|
cannam@154
|
114
|
cannam@154
|
115 /* Convert to monic warped coefficients */
|
cannam@154
|
116 lambda_Q16 = -lambda_Q16;
|
cannam@154
|
117 for( i = order - 1; i > 0; i-- ) {
|
cannam@154
|
118 coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 );
|
cannam@154
|
119 }
|
cannam@154
|
120 lambda_Q16 = -lambda_Q16;
|
cannam@154
|
121 nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 );
|
cannam@154
|
122 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 );
|
cannam@154
|
123 gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
|
cannam@154
|
124 for( i = 0; i < order; i++ ) {
|
cannam@154
|
125 coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] );
|
cannam@154
|
126 }
|
cannam@154
|
127 }
|
cannam@154
|
128 silk_assert( 0 );
|
cannam@154
|
129 }
|
cannam@154
|
130
|
cannam@154
|
131 /* Disable MIPS version until it's updated. */
|
cannam@154
|
132 #if 0 && defined(MIPSr1_ASM)
|
cannam@154
|
133 #include "mips/noise_shape_analysis_FIX_mipsr1.h"
|
cannam@154
|
134 #endif
|
cannam@154
|
135
|
cannam@154
|
136 /**************************************************************/
|
cannam@154
|
137 /* Compute noise shaping coefficients and initial gain values */
|
cannam@154
|
138 /**************************************************************/
|
cannam@154
|
139 #ifndef OVERRIDE_silk_noise_shape_analysis_FIX
|
cannam@154
|
140 void silk_noise_shape_analysis_FIX(
|
cannam@154
|
141 silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */
|
cannam@154
|
142 silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */
|
cannam@154
|
143 const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */
|
cannam@154
|
144 const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */
|
cannam@154
|
145 int arch /* I Run-time architecture */
|
cannam@154
|
146 )
|
cannam@154
|
147 {
|
cannam@154
|
148 silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
|
cannam@154
|
149 opus_int k, i, nSamples, nSegs, Qnrg, b_Q14, warping_Q16, scale = 0;
|
cannam@154
|
150 opus_int32 SNR_adj_dB_Q7, HarmShapeGain_Q16, Tilt_Q16, tmp32;
|
cannam@154
|
151 opus_int32 nrg, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
|
cannam@154
|
152 opus_int32 BWExp_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
|
cannam@154
|
153 opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
|
cannam@154
|
154 opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
|
cannam@154
|
155 opus_int32 AR_Q24[ MAX_SHAPE_LPC_ORDER ];
|
cannam@154
|
156 VARDECL( opus_int16, x_windowed );
|
cannam@154
|
157 const opus_int16 *x_ptr, *pitch_res_ptr;
|
cannam@154
|
158 SAVE_STACK;
|
cannam@154
|
159
|
cannam@154
|
160 /* Point to start of first LPC analysis block */
|
cannam@154
|
161 x_ptr = x - psEnc->sCmn.la_shape;
|
cannam@154
|
162
|
cannam@154
|
163 /****************/
|
cannam@154
|
164 /* GAIN CONTROL */
|
cannam@154
|
165 /****************/
|
cannam@154
|
166 SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
|
cannam@154
|
167
|
cannam@154
|
168 /* Input quality is the average of the quality in the lowest two VAD bands */
|
cannam@154
|
169 psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
|
cannam@154
|
170 + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
|
cannam@154
|
171
|
cannam@154
|
172 /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
|
cannam@154
|
173 psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
|
cannam@154
|
174 SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
|
cannam@154
|
175
|
cannam@154
|
176 /* Reduce coding SNR during low speech activity */
|
cannam@154
|
177 if( psEnc->sCmn.useCBR == 0 ) {
|
cannam@154
|
178 b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
|
cannam@154
|
179 b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
|
cannam@154
|
180 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
|
cannam@154
|
181 silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/
|
cannam@154
|
182 silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/
|
cannam@154
|
183 }
|
cannam@154
|
184
|
cannam@154
|
185 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
cannam@154
|
186 /* Reduce gains for periodic signals */
|
cannam@154
|
187 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
|
cannam@154
|
188 } else {
|
cannam@154
|
189 /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
|
cannam@154
|
190 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
|
cannam@154
|
191 silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
|
cannam@154
|
192 SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
|
cannam@154
|
193 }
|
cannam@154
|
194
|
cannam@154
|
195 /*************************/
|
cannam@154
|
196 /* SPARSENESS PROCESSING */
|
cannam@154
|
197 /*************************/
|
cannam@154
|
198 /* Set quantizer offset */
|
cannam@154
|
199 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
cannam@154
|
200 /* Initially set to 0; may be overruled in process_gains(..) */
|
cannam@154
|
201 psEnc->sCmn.indices.quantOffsetType = 0;
|
cannam@154
|
202 } else {
|
cannam@154
|
203 /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
|
cannam@154
|
204 nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
|
cannam@154
|
205 energy_variation_Q7 = 0;
|
cannam@154
|
206 log_energy_prev_Q7 = 0;
|
cannam@154
|
207 pitch_res_ptr = pitch_res;
|
cannam@154
|
208 nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2;
|
cannam@154
|
209 for( k = 0; k < nSegs; k++ ) {
|
cannam@154
|
210 silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
|
cannam@154
|
211 nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/
|
cannam@154
|
212
|
cannam@154
|
213 log_energy_Q7 = silk_lin2log( nrg );
|
cannam@154
|
214 if( k > 0 ) {
|
cannam@154
|
215 energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
|
cannam@154
|
216 }
|
cannam@154
|
217 log_energy_prev_Q7 = log_energy_Q7;
|
cannam@154
|
218 pitch_res_ptr += nSamples;
|
cannam@154
|
219 }
|
cannam@154
|
220
|
cannam@154
|
221 /* Set quantization offset depending on sparseness measure */
|
cannam@154
|
222 if( energy_variation_Q7 > SILK_FIX_CONST( ENERGY_VARIATION_THRESHOLD_QNT_OFFSET, 7 ) * (nSegs-1) ) {
|
cannam@154
|
223 psEnc->sCmn.indices.quantOffsetType = 0;
|
cannam@154
|
224 } else {
|
cannam@154
|
225 psEnc->sCmn.indices.quantOffsetType = 1;
|
cannam@154
|
226 }
|
cannam@154
|
227 }
|
cannam@154
|
228
|
cannam@154
|
229 /*******************************/
|
cannam@154
|
230 /* Control bandwidth expansion */
|
cannam@154
|
231 /*******************************/
|
cannam@154
|
232 /* More BWE for signals with high prediction gain */
|
cannam@154
|
233 strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
|
cannam@154
|
234 BWExp_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
|
cannam@154
|
235 silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
|
cannam@154
|
236
|
cannam@154
|
237 if( psEnc->sCmn.warping_Q16 > 0 ) {
|
cannam@154
|
238 /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
|
cannam@154
|
239 warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
|
cannam@154
|
240 } else {
|
cannam@154
|
241 warping_Q16 = 0;
|
cannam@154
|
242 }
|
cannam@154
|
243
|
cannam@154
|
244 /********************************************/
|
cannam@154
|
245 /* Compute noise shaping AR coefs and gains */
|
cannam@154
|
246 /********************************************/
|
cannam@154
|
247 ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 );
|
cannam@154
|
248 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
cannam@154
|
249 /* Apply window: sine slope followed by flat part followed by cosine slope */
|
cannam@154
|
250 opus_int shift, slope_part, flat_part;
|
cannam@154
|
251 flat_part = psEnc->sCmn.fs_kHz * 3;
|
cannam@154
|
252 slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
|
cannam@154
|
253
|
cannam@154
|
254 silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
|
cannam@154
|
255 shift = slope_part;
|
cannam@154
|
256 silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
|
cannam@154
|
257 shift += flat_part;
|
cannam@154
|
258 silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
|
cannam@154
|
259
|
cannam@154
|
260 /* Update pointer: next LPC analysis block */
|
cannam@154
|
261 x_ptr += psEnc->sCmn.subfr_length;
|
cannam@154
|
262
|
cannam@154
|
263 if( psEnc->sCmn.warping_Q16 > 0 ) {
|
cannam@154
|
264 /* Calculate warped auto correlation */
|
cannam@154
|
265 silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch );
|
cannam@154
|
266 } else {
|
cannam@154
|
267 /* Calculate regular auto correlation */
|
cannam@154
|
268 silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch );
|
cannam@154
|
269 }
|
cannam@154
|
270
|
cannam@154
|
271 /* Add white noise, as a fraction of energy */
|
cannam@154
|
272 auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
|
cannam@154
|
273 SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
|
cannam@154
|
274
|
cannam@154
|
275 /* Calculate the reflection coefficients using schur */
|
cannam@154
|
276 nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
|
cannam@154
|
277 silk_assert( nrg >= 0 );
|
cannam@154
|
278
|
cannam@154
|
279 /* Convert reflection coefficients to prediction coefficients */
|
cannam@154
|
280 silk_k2a_Q16( AR_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
|
cannam@154
|
281
|
cannam@154
|
282 Qnrg = -scale; /* range: -12...30*/
|
cannam@154
|
283 silk_assert( Qnrg >= -12 );
|
cannam@154
|
284 silk_assert( Qnrg <= 30 );
|
cannam@154
|
285
|
cannam@154
|
286 /* Make sure that Qnrg is an even number */
|
cannam@154
|
287 if( Qnrg & 1 ) {
|
cannam@154
|
288 Qnrg -= 1;
|
cannam@154
|
289 nrg >>= 1;
|
cannam@154
|
290 }
|
cannam@154
|
291
|
cannam@154
|
292 tmp32 = silk_SQRT_APPROX( nrg );
|
cannam@154
|
293 Qnrg >>= 1; /* range: -6...15*/
|
cannam@154
|
294
|
cannam@154
|
295 psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg );
|
cannam@154
|
296
|
cannam@154
|
297 if( psEnc->sCmn.warping_Q16 > 0 ) {
|
cannam@154
|
298 /* Adjust gain for warping */
|
cannam@154
|
299 gain_mult_Q16 = warped_gain( AR_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
|
cannam@154
|
300 silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 );
|
cannam@154
|
301 if( psEncCtrl->Gains_Q16[ k ] < SILK_FIX_CONST( 0.25, 16 ) ) {
|
cannam@154
|
302 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
|
cannam@154
|
303 } else {
|
cannam@154
|
304 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 );
|
cannam@154
|
305 if ( psEncCtrl->Gains_Q16[ k ] >= ( silk_int32_MAX >> 1 ) ) {
|
cannam@154
|
306 psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
|
cannam@154
|
307 } else {
|
cannam@154
|
308 psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT32( psEncCtrl->Gains_Q16[ k ], 1 );
|
cannam@154
|
309 }
|
cannam@154
|
310 }
|
cannam@154
|
311 silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 );
|
cannam@154
|
312 }
|
cannam@154
|
313
|
cannam@154
|
314 /* Bandwidth expansion */
|
cannam@154
|
315 silk_bwexpander_32( AR_Q24, psEnc->sCmn.shapingLPCOrder, BWExp_Q16 );
|
cannam@154
|
316
|
cannam@154
|
317 if( psEnc->sCmn.warping_Q16 > 0 ) {
|
cannam@154
|
318 /* Convert to monic warped prediction coefficients and limit absolute values */
|
cannam@154
|
319 limit_warped_coefs( AR_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
|
cannam@154
|
320
|
cannam@154
|
321 /* Convert from Q24 to Q13 and store in int16 */
|
cannam@154
|
322 for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
|
cannam@154
|
323 psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR_Q24[ i ], 11 ) );
|
cannam@154
|
324 }
|
cannam@154
|
325 } else {
|
cannam@154
|
326 silk_LPC_fit( &psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER ], AR_Q24, 13, 24, psEnc->sCmn.shapingLPCOrder );
|
cannam@154
|
327 }
|
cannam@154
|
328 }
|
cannam@154
|
329
|
cannam@154
|
330 /*****************/
|
cannam@154
|
331 /* Gain tweaking */
|
cannam@154
|
332 /*****************/
|
cannam@154
|
333 /* Increase gains during low speech activity and put lower limit on gains */
|
cannam@154
|
334 gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
|
cannam@154
|
335 gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
|
cannam@154
|
336 silk_assert( gain_mult_Q16 > 0 );
|
cannam@154
|
337 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
cannam@154
|
338 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
|
cannam@154
|
339 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
|
cannam@154
|
340 psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
|
cannam@154
|
341 }
|
cannam@154
|
342
|
cannam@154
|
343
|
cannam@154
|
344 /************************************************/
|
cannam@154
|
345 /* Control low-frequency shaping and noise tilt */
|
cannam@154
|
346 /************************************************/
|
cannam@154
|
347 /* Less low frequency shaping for noisy inputs */
|
cannam@154
|
348 strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
|
cannam@154
|
349 SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
|
cannam@154
|
350 strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
|
cannam@154
|
351 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
cannam@154
|
352 /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
|
cannam@154
|
353 /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
|
cannam@154
|
354 opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
|
cannam@154
|
355 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
cannam@154
|
356 b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
|
cannam@154
|
357 /* Pack two coefficients in one int32 */
|
cannam@154
|
358 psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
|
cannam@154
|
359 psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
|
cannam@154
|
360 }
|
cannam@154
|
361 silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
|
cannam@154
|
362 Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
|
cannam@154
|
363 silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
|
cannam@154
|
364 silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
|
cannam@154
|
365 } else {
|
cannam@154
|
366 b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
|
cannam@154
|
367 /* Pack two coefficients in one int32 */
|
cannam@154
|
368 psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
|
cannam@154
|
369 silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
|
cannam@154
|
370 psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
|
cannam@154
|
371 for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
|
cannam@154
|
372 psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
|
cannam@154
|
373 }
|
cannam@154
|
374 Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
|
cannam@154
|
375 }
|
cannam@154
|
376
|
cannam@154
|
377 /****************************/
|
cannam@154
|
378 /* HARMONIC SHAPING CONTROL */
|
cannam@154
|
379 /****************************/
|
cannam@154
|
380 if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
cannam@154
|
381 /* More harmonic noise shaping for high bitrates or noisy input */
|
cannam@154
|
382 HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
|
cannam@154
|
383 SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
|
cannam@154
|
384 psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
|
cannam@154
|
385
|
cannam@154
|
386 /* Less harmonic noise shaping for less periodic signals */
|
cannam@154
|
387 HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
|
cannam@154
|
388 silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
|
cannam@154
|
389 } else {
|
cannam@154
|
390 HarmShapeGain_Q16 = 0;
|
cannam@154
|
391 }
|
cannam@154
|
392
|
cannam@154
|
393 /*************************/
|
cannam@154
|
394 /* Smooth over subframes */
|
cannam@154
|
395 /*************************/
|
cannam@154
|
396 for( k = 0; k < MAX_NB_SUBFR; k++ ) {
|
cannam@154
|
397 psShapeSt->HarmShapeGain_smth_Q16 =
|
cannam@154
|
398 silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
|
cannam@154
|
399 psShapeSt->Tilt_smth_Q16 =
|
cannam@154
|
400 silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
|
cannam@154
|
401
|
cannam@154
|
402 psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
|
cannam@154
|
403 psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 );
|
cannam@154
|
404 }
|
cannam@154
|
405 RESTORE_STACK;
|
cannam@154
|
406 }
|
cannam@154
|
407 #endif /* OVERRIDE_silk_noise_shape_analysis_FIX */
|