cannam@154: /*********************************************************************** cannam@154: Copyright (c) 2006-2011, Skype Limited. All rights reserved. cannam@154: Redistribution and use in source and binary forms, with or without cannam@154: modification, are permitted provided that the following conditions cannam@154: are met: cannam@154: - Redistributions of source code must retain the above copyright notice, cannam@154: this list of conditions and the following disclaimer. cannam@154: - Redistributions in binary form must reproduce the above copyright cannam@154: notice, this list of conditions and the following disclaimer in the cannam@154: documentation and/or other materials provided with the distribution. cannam@154: - Neither the name of Internet Society, IETF or IETF Trust, nor the cannam@154: names of specific contributors, may be used to endorse or promote cannam@154: products derived from this software without specific prior written cannam@154: permission. cannam@154: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" cannam@154: AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE cannam@154: IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE cannam@154: ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE cannam@154: LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR cannam@154: CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF cannam@154: SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS cannam@154: INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN cannam@154: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) cannam@154: ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE cannam@154: POSSIBILITY OF SUCH DAMAGE. cannam@154: ***********************************************************************/ cannam@154: cannam@154: #ifdef HAVE_CONFIG_H cannam@154: #include "config.h" cannam@154: #endif cannam@154: cannam@154: #include "main_FIX.h" cannam@154: #include "stack_alloc.h" cannam@154: #include "tuning_parameters.h" cannam@154: cannam@154: /* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */ cannam@154: /* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */ cannam@154: /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */ cannam@154: /* coefficient in an array of coefficients, for monic filters. */ cannam@154: static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/ cannam@154: const opus_int32 *coefs_Q24, cannam@154: opus_int lambda_Q16, cannam@154: opus_int order cannam@154: ) { cannam@154: opus_int i; cannam@154: opus_int32 gain_Q24; cannam@154: cannam@154: lambda_Q16 = -lambda_Q16; cannam@154: gain_Q24 = coefs_Q24[ order - 1 ]; cannam@154: for( i = order - 2; i >= 0; i-- ) { cannam@154: gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 ); cannam@154: } cannam@154: gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 ); cannam@154: return silk_INVERSE32_varQ( gain_Q24, 40 ); cannam@154: } cannam@154: cannam@154: /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ cannam@154: /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ cannam@154: static OPUS_INLINE void limit_warped_coefs( cannam@154: opus_int32 *coefs_Q24, cannam@154: opus_int lambda_Q16, cannam@154: opus_int32 limit_Q24, cannam@154: opus_int order cannam@154: ) { cannam@154: opus_int i, iter, ind = 0; cannam@154: opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_Q16; cannam@154: opus_int32 nom_Q16, den_Q24; cannam@154: opus_int32 limit_Q20, maxabs_Q20; cannam@154: cannam@154: /* Convert to monic coefficients */ cannam@154: lambda_Q16 = -lambda_Q16; cannam@154: for( i = order - 1; i > 0; i-- ) { cannam@154: coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); cannam@154: } cannam@154: lambda_Q16 = -lambda_Q16; cannam@154: nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); cannam@154: den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 ); cannam@154: gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); cannam@154: for( i = 0; i < order; i++ ) { cannam@154: coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); cannam@154: } cannam@154: limit_Q20 = silk_RSHIFT(limit_Q24, 4); cannam@154: for( iter = 0; iter < 10; iter++ ) { cannam@154: /* Find maximum absolute value */ cannam@154: maxabs_Q24 = -1; cannam@154: for( i = 0; i < order; i++ ) { cannam@154: tmp = silk_abs_int32( coefs_Q24[ i ] ); cannam@154: if( tmp > maxabs_Q24 ) { cannam@154: maxabs_Q24 = tmp; cannam@154: ind = i; cannam@154: } cannam@154: } cannam@154: /* Use Q20 to avoid any overflow when multiplying by (ind + 1) later. */ cannam@154: maxabs_Q20 = silk_RSHIFT(maxabs_Q24, 4); cannam@154: if( maxabs_Q20 <= limit_Q20 ) { cannam@154: /* Coefficients are within range - done */ cannam@154: return; cannam@154: } cannam@154: cannam@154: /* Convert back to true warped coefficients */ cannam@154: for( i = 1; i < order; i++ ) { cannam@154: coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); cannam@154: } cannam@154: gain_Q16 = silk_INVERSE32_varQ( gain_Q16, 32 ); cannam@154: for( i = 0; i < order; i++ ) { cannam@154: coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); cannam@154: } cannam@154: cannam@154: /* Apply bandwidth expansion */ cannam@154: chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ( cannam@154: silk_SMULWB( maxabs_Q20 - limit_Q20, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ), cannam@154: silk_MUL( maxabs_Q20, ind + 1 ), 22 ); cannam@154: silk_bwexpander_32( coefs_Q24, order, chirp_Q16 ); cannam@154: cannam@154: /* Convert to monic warped coefficients */ cannam@154: lambda_Q16 = -lambda_Q16; cannam@154: for( i = order - 1; i > 0; i-- ) { cannam@154: coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); cannam@154: } cannam@154: lambda_Q16 = -lambda_Q16; cannam@154: nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); cannam@154: den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 ); cannam@154: gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); cannam@154: for( i = 0; i < order; i++ ) { cannam@154: coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); cannam@154: } cannam@154: } cannam@154: silk_assert( 0 ); cannam@154: } cannam@154: cannam@154: /* Disable MIPS version until it's updated. */ cannam@154: #if 0 && defined(MIPSr1_ASM) cannam@154: #include "mips/noise_shape_analysis_FIX_mipsr1.h" cannam@154: #endif cannam@154: cannam@154: /**************************************************************/ cannam@154: /* Compute noise shaping coefficients and initial gain values */ cannam@154: /**************************************************************/ cannam@154: #ifndef OVERRIDE_silk_noise_shape_analysis_FIX cannam@154: void silk_noise_shape_analysis_FIX( cannam@154: silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */ cannam@154: silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */ cannam@154: const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */ cannam@154: const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */ cannam@154: int arch /* I Run-time architecture */ cannam@154: ) cannam@154: { cannam@154: silk_shape_state_FIX *psShapeSt = &psEnc->sShape; cannam@154: opus_int k, i, nSamples, nSegs, Qnrg, b_Q14, warping_Q16, scale = 0; cannam@154: opus_int32 SNR_adj_dB_Q7, HarmShapeGain_Q16, Tilt_Q16, tmp32; cannam@154: opus_int32 nrg, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7; cannam@154: opus_int32 BWExp_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8; cannam@154: opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; cannam@154: opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ]; cannam@154: opus_int32 AR_Q24[ MAX_SHAPE_LPC_ORDER ]; cannam@154: VARDECL( opus_int16, x_windowed ); cannam@154: const opus_int16 *x_ptr, *pitch_res_ptr; cannam@154: SAVE_STACK; cannam@154: cannam@154: /* Point to start of first LPC analysis block */ cannam@154: x_ptr = x - psEnc->sCmn.la_shape; cannam@154: cannam@154: /****************/ cannam@154: /* GAIN CONTROL */ cannam@154: /****************/ cannam@154: SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7; cannam@154: cannam@154: /* Input quality is the average of the quality in the lowest two VAD bands */ cannam@154: psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ] cannam@154: + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 ); cannam@154: cannam@154: /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */ cannam@154: psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 - cannam@154: SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 ); cannam@154: cannam@154: /* Reduce coding SNR during low speech activity */ cannam@154: if( psEnc->sCmn.useCBR == 0 ) { cannam@154: b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8; cannam@154: b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 ); cannam@154: SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, cannam@154: silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/ cannam@154: silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/ cannam@154: } cannam@154: cannam@154: if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { cannam@154: /* Reduce gains for periodic signals */ cannam@154: SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 ); cannam@154: } else { cannam@154: /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ cannam@154: SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, cannam@154: silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ), cannam@154: SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 ); cannam@154: } cannam@154: cannam@154: /*************************/ cannam@154: /* SPARSENESS PROCESSING */ cannam@154: /*************************/ cannam@154: /* Set quantizer offset */ cannam@154: if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { cannam@154: /* Initially set to 0; may be overruled in process_gains(..) */ cannam@154: psEnc->sCmn.indices.quantOffsetType = 0; cannam@154: } else { cannam@154: /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ cannam@154: nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 ); cannam@154: energy_variation_Q7 = 0; cannam@154: log_energy_prev_Q7 = 0; cannam@154: pitch_res_ptr = pitch_res; cannam@154: nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; cannam@154: for( k = 0; k < nSegs; k++ ) { cannam@154: silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples ); cannam@154: nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/ cannam@154: cannam@154: log_energy_Q7 = silk_lin2log( nrg ); cannam@154: if( k > 0 ) { cannam@154: energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 ); cannam@154: } cannam@154: log_energy_prev_Q7 = log_energy_Q7; cannam@154: pitch_res_ptr += nSamples; cannam@154: } cannam@154: cannam@154: /* Set quantization offset depending on sparseness measure */ cannam@154: if( energy_variation_Q7 > SILK_FIX_CONST( ENERGY_VARIATION_THRESHOLD_QNT_OFFSET, 7 ) * (nSegs-1) ) { cannam@154: psEnc->sCmn.indices.quantOffsetType = 0; cannam@154: } else { cannam@154: psEnc->sCmn.indices.quantOffsetType = 1; cannam@154: } cannam@154: } cannam@154: cannam@154: /*******************************/ cannam@154: /* Control bandwidth expansion */ cannam@154: /*******************************/ cannam@154: /* More BWE for signals with high prediction gain */ cannam@154: strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) ); cannam@154: BWExp_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), cannam@154: silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 ); cannam@154: cannam@154: if( psEnc->sCmn.warping_Q16 > 0 ) { cannam@154: /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ cannam@154: warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) ); cannam@154: } else { cannam@154: warping_Q16 = 0; cannam@154: } cannam@154: cannam@154: /********************************************/ cannam@154: /* Compute noise shaping AR coefs and gains */ cannam@154: /********************************************/ cannam@154: ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 ); cannam@154: for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { cannam@154: /* Apply window: sine slope followed by flat part followed by cosine slope */ cannam@154: opus_int shift, slope_part, flat_part; cannam@154: flat_part = psEnc->sCmn.fs_kHz * 3; cannam@154: slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 ); cannam@154: cannam@154: silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part ); cannam@154: shift = slope_part; cannam@154: silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) ); cannam@154: shift += flat_part; cannam@154: silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part ); cannam@154: cannam@154: /* Update pointer: next LPC analysis block */ cannam@154: x_ptr += psEnc->sCmn.subfr_length; cannam@154: cannam@154: if( psEnc->sCmn.warping_Q16 > 0 ) { cannam@154: /* Calculate warped auto correlation */ cannam@154: silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch ); cannam@154: } else { cannam@154: /* Calculate regular auto correlation */ cannam@154: silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch ); cannam@154: } cannam@154: cannam@154: /* Add white noise, as a fraction of energy */ cannam@154: auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ), cannam@154: SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) ); cannam@154: cannam@154: /* Calculate the reflection coefficients using schur */ cannam@154: nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder ); cannam@154: silk_assert( nrg >= 0 ); cannam@154: cannam@154: /* Convert reflection coefficients to prediction coefficients */ cannam@154: silk_k2a_Q16( AR_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); cannam@154: cannam@154: Qnrg = -scale; /* range: -12...30*/ cannam@154: silk_assert( Qnrg >= -12 ); cannam@154: silk_assert( Qnrg <= 30 ); cannam@154: cannam@154: /* Make sure that Qnrg is an even number */ cannam@154: if( Qnrg & 1 ) { cannam@154: Qnrg -= 1; cannam@154: nrg >>= 1; cannam@154: } cannam@154: cannam@154: tmp32 = silk_SQRT_APPROX( nrg ); cannam@154: Qnrg >>= 1; /* range: -6...15*/ cannam@154: cannam@154: psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg ); cannam@154: cannam@154: if( psEnc->sCmn.warping_Q16 > 0 ) { cannam@154: /* Adjust gain for warping */ cannam@154: gain_mult_Q16 = warped_gain( AR_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder ); cannam@154: silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 ); cannam@154: if( psEncCtrl->Gains_Q16[ k ] < SILK_FIX_CONST( 0.25, 16 ) ) { cannam@154: psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); cannam@154: } else { cannam@154: psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ); cannam@154: if ( psEncCtrl->Gains_Q16[ k ] >= ( silk_int32_MAX >> 1 ) ) { cannam@154: psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX; cannam@154: } else { cannam@154: psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT32( psEncCtrl->Gains_Q16[ k ], 1 ); cannam@154: } cannam@154: } cannam@154: silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 ); cannam@154: } cannam@154: cannam@154: /* Bandwidth expansion */ cannam@154: silk_bwexpander_32( AR_Q24, psEnc->sCmn.shapingLPCOrder, BWExp_Q16 ); cannam@154: cannam@154: if( psEnc->sCmn.warping_Q16 > 0 ) { cannam@154: /* Convert to monic warped prediction coefficients and limit absolute values */ cannam@154: limit_warped_coefs( AR_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder ); cannam@154: cannam@154: /* Convert from Q24 to Q13 and store in int16 */ cannam@154: for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) { cannam@154: psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR_Q24[ i ], 11 ) ); cannam@154: } cannam@154: } else { cannam@154: silk_LPC_fit( &psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER ], AR_Q24, 13, 24, psEnc->sCmn.shapingLPCOrder ); cannam@154: } cannam@154: } cannam@154: cannam@154: /*****************/ cannam@154: /* Gain tweaking */ cannam@154: /*****************/ cannam@154: /* Increase gains during low speech activity and put lower limit on gains */ cannam@154: gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) ); cannam@154: gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) ); cannam@154: silk_assert( gain_mult_Q16 > 0 ); cannam@154: for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { cannam@154: psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); cannam@154: silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); cannam@154: psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 ); cannam@154: } cannam@154: cannam@154: cannam@154: /************************************************/ cannam@154: /* Control low-frequency shaping and noise tilt */ cannam@154: /************************************************/ cannam@154: /* Less low frequency shaping for noisy inputs */ cannam@154: strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ), cannam@154: SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) ); cannam@154: strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 ); cannam@154: if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { cannam@154: /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */ cannam@154: /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/ cannam@154: opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz ); cannam@154: for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { cannam@154: b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] ); cannam@154: /* Pack two coefficients in one int32 */ cannam@154: psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 ); cannam@154: psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); cannam@154: } cannam@154: silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/ cannam@154: Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) - cannam@154: silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ), cannam@154: silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) ); cannam@154: } else { cannam@154: b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/ cannam@154: /* Pack two coefficients in one int32 */ cannam@154: psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - cannam@154: silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 ); cannam@154: psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); cannam@154: for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { cannam@154: psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ]; cannam@154: } cannam@154: Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 ); cannam@154: } cannam@154: cannam@154: /****************************/ cannam@154: /* HARMONIC SHAPING CONTROL */ cannam@154: /****************************/ cannam@154: if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { cannam@154: /* More harmonic noise shaping for high bitrates or noisy input */ cannam@154: HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ), cannam@154: SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ), cannam@154: psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) ); cannam@154: cannam@154: /* Less harmonic noise shaping for less periodic signals */ cannam@154: HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ), cannam@154: silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) ); cannam@154: } else { cannam@154: HarmShapeGain_Q16 = 0; cannam@154: } cannam@154: cannam@154: /*************************/ cannam@154: /* Smooth over subframes */ cannam@154: /*************************/ cannam@154: for( k = 0; k < MAX_NB_SUBFR; k++ ) { cannam@154: psShapeSt->HarmShapeGain_smth_Q16 = cannam@154: silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); cannam@154: psShapeSt->Tilt_smth_Q16 = cannam@154: silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); cannam@154: cannam@154: psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 ); cannam@154: psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 ); cannam@154: } cannam@154: RESTORE_STACK; cannam@154: } cannam@154: #endif /* OVERRIDE_silk_noise_shape_analysis_FIX */