annotate src/fftw-3.3.8/reodft/reodft11e-radix2.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 /* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems
cannam@167 23 of half the size, plus some pre/post-processing. Use a trick from:
cannam@167 24
cannam@167 25 Zhongde Wang, "On computing the discrete Fourier and cosine transforms,"
cannam@167 26 IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985).
cannam@167 27
cannam@167 28 to re-express as a pair of half-size REDFT01 (DCT-III) problems. Our
cannam@167 29 implementation looks quite a bit different from the algorithm described
cannam@167 30 in the paper because we combined the paper's pre/post-processing with
cannam@167 31 the pre/post-processing used to turn REDFT01 into R2HC. (Also, the
cannam@167 32 paper uses a DCT/DST pair, but we turn the DST into a DCT via the
cannam@167 33 usual reordering/sign-flip trick. We additionally combined a couple
cannam@167 34 of the matrices/transformations of the paper into a single pass.)
cannam@167 35
cannam@167 36 NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho
cannam@167 37 that turned out to have numerical problems; see reodft11e-r2hc.c.
cannam@167 38
cannam@167 39 (For odd sizes, see reodft11e-r2hc-odd.c.)
cannam@167 40 */
cannam@167 41
cannam@167 42 #include "reodft/reodft.h"
cannam@167 43
cannam@167 44 typedef struct {
cannam@167 45 solver super;
cannam@167 46 } S;
cannam@167 47
cannam@167 48 typedef struct {
cannam@167 49 plan_rdft super;
cannam@167 50 plan *cld;
cannam@167 51 twid *td, *td2;
cannam@167 52 INT is, os;
cannam@167 53 INT n;
cannam@167 54 INT vl;
cannam@167 55 INT ivs, ovs;
cannam@167 56 rdft_kind kind;
cannam@167 57 } P;
cannam@167 58
cannam@167 59 static void apply_re11(const plan *ego_, R *I, R *O)
cannam@167 60 {
cannam@167 61 const P *ego = (const P *) ego_;
cannam@167 62 INT is = ego->is, os = ego->os;
cannam@167 63 INT i, n = ego->n, n2 = n/2;
cannam@167 64 INT iv, vl = ego->vl;
cannam@167 65 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@167 66 R *W = ego->td->W;
cannam@167 67 R *W2;
cannam@167 68 R *buf;
cannam@167 69
cannam@167 70 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@167 71
cannam@167 72 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@167 73 buf[0] = K(2.0) * I[0];
cannam@167 74 buf[n2] = K(2.0) * I[is * (n - 1)];
cannam@167 75 for (i = 1; i + i < n2; ++i) {
cannam@167 76 INT k = i + i;
cannam@167 77 E a, b, a2, b2;
cannam@167 78 {
cannam@167 79 E u, v;
cannam@167 80 u = I[is * (k - 1)];
cannam@167 81 v = I[is * k];
cannam@167 82 a = u + v;
cannam@167 83 b2 = u - v;
cannam@167 84 }
cannam@167 85 {
cannam@167 86 E u, v;
cannam@167 87 u = I[is * (n - k - 1)];
cannam@167 88 v = I[is * (n - k)];
cannam@167 89 b = u + v;
cannam@167 90 a2 = u - v;
cannam@167 91 }
cannam@167 92 {
cannam@167 93 E wa, wb;
cannam@167 94 wa = W[2*i];
cannam@167 95 wb = W[2*i + 1];
cannam@167 96 {
cannam@167 97 E apb, amb;
cannam@167 98 apb = a + b;
cannam@167 99 amb = a - b;
cannam@167 100 buf[i] = wa * amb + wb * apb;
cannam@167 101 buf[n2 - i] = wa * apb - wb * amb;
cannam@167 102 }
cannam@167 103 {
cannam@167 104 E apb, amb;
cannam@167 105 apb = a2 + b2;
cannam@167 106 amb = a2 - b2;
cannam@167 107 buf[n2 + i] = wa * amb + wb * apb;
cannam@167 108 buf[n - i] = wa * apb - wb * amb;
cannam@167 109 }
cannam@167 110 }
cannam@167 111 }
cannam@167 112 if (i + i == n2) {
cannam@167 113 E u, v;
cannam@167 114 u = I[is * (n2 - 1)];
cannam@167 115 v = I[is * n2];
cannam@167 116 buf[i] = (u + v) * (W[2*i] * K(2.0));
cannam@167 117 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
cannam@167 118 }
cannam@167 119
cannam@167 120
cannam@167 121 /* child plan: two r2hc's of size n/2 */
cannam@167 122 {
cannam@167 123 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@167 124 cld->apply((plan *) cld, buf, buf);
cannam@167 125 }
cannam@167 126
cannam@167 127 W2 = ego->td2->W;
cannam@167 128 { /* i == 0 case */
cannam@167 129 E wa, wb;
cannam@167 130 E a, b;
cannam@167 131 wa = W2[0]; /* cos */
cannam@167 132 wb = W2[1]; /* sin */
cannam@167 133 a = buf[0];
cannam@167 134 b = buf[n2];
cannam@167 135 O[0] = wa * a + wb * b;
cannam@167 136 O[os * (n - 1)] = wb * a - wa * b;
cannam@167 137 }
cannam@167 138 W2 += 2;
cannam@167 139 for (i = 1; i + i < n2; ++i, W2 += 2) {
cannam@167 140 INT k;
cannam@167 141 E u, v, u2, v2;
cannam@167 142 u = buf[i];
cannam@167 143 v = buf[n2 - i];
cannam@167 144 u2 = buf[n2 + i];
cannam@167 145 v2 = buf[n - i];
cannam@167 146 k = (i + i) - 1;
cannam@167 147 {
cannam@167 148 E wa, wb;
cannam@167 149 E a, b;
cannam@167 150 wa = W2[0]; /* cos */
cannam@167 151 wb = W2[1]; /* sin */
cannam@167 152 a = u - v;
cannam@167 153 b = v2 - u2;
cannam@167 154 O[os * k] = wa * a + wb * b;
cannam@167 155 O[os * (n - 1 - k)] = wb * a - wa * b;
cannam@167 156 }
cannam@167 157 ++k;
cannam@167 158 W2 += 2;
cannam@167 159 {
cannam@167 160 E wa, wb;
cannam@167 161 E a, b;
cannam@167 162 wa = W2[0]; /* cos */
cannam@167 163 wb = W2[1]; /* sin */
cannam@167 164 a = u + v;
cannam@167 165 b = u2 + v2;
cannam@167 166 O[os * k] = wa * a + wb * b;
cannam@167 167 O[os * (n - 1 - k)] = wb * a - wa * b;
cannam@167 168 }
cannam@167 169 }
cannam@167 170 if (i + i == n2) {
cannam@167 171 INT k = (i + i) - 1;
cannam@167 172 E wa, wb;
cannam@167 173 E a, b;
cannam@167 174 wa = W2[0]; /* cos */
cannam@167 175 wb = W2[1]; /* sin */
cannam@167 176 a = buf[i];
cannam@167 177 b = buf[n2 + i];
cannam@167 178 O[os * k] = wa * a - wb * b;
cannam@167 179 O[os * (n - 1 - k)] = wb * a + wa * b;
cannam@167 180 }
cannam@167 181 }
cannam@167 182
cannam@167 183 X(ifree)(buf);
cannam@167 184 }
cannam@167 185
cannam@167 186 #if 0
cannam@167 187
cannam@167 188 /* This version of apply_re11 uses REDFT01 child plans, more similar
cannam@167 189 to the original paper by Z. Wang. We keep it around for reference
cannam@167 190 (it is simpler) and because it may become more efficient if we
cannam@167 191 ever implement REDFT01 codelets. */
cannam@167 192
cannam@167 193 static void apply_re11(const plan *ego_, R *I, R *O)
cannam@167 194 {
cannam@167 195 const P *ego = (const P *) ego_;
cannam@167 196 INT is = ego->is, os = ego->os;
cannam@167 197 INT i, n = ego->n;
cannam@167 198 INT iv, vl = ego->vl;
cannam@167 199 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@167 200 R *W;
cannam@167 201 R *buf;
cannam@167 202
cannam@167 203 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@167 204
cannam@167 205 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@167 206 buf[0] = K(2.0) * I[0];
cannam@167 207 buf[n/2] = K(2.0) * I[is * (n - 1)];
cannam@167 208 for (i = 1; i + i < n; ++i) {
cannam@167 209 INT k = i + i;
cannam@167 210 E a, b;
cannam@167 211 a = I[is * (k - 1)];
cannam@167 212 b = I[is * k];
cannam@167 213 buf[i] = a + b;
cannam@167 214 buf[n - i] = a - b;
cannam@167 215 }
cannam@167 216
cannam@167 217 /* child plan: two redft01's (DCT-III) */
cannam@167 218 {
cannam@167 219 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@167 220 cld->apply((plan *) cld, buf, buf);
cannam@167 221 }
cannam@167 222
cannam@167 223 W = ego->td2->W;
cannam@167 224 for (i = 0; i + 1 < n/2; ++i, W += 2) {
cannam@167 225 {
cannam@167 226 E wa, wb;
cannam@167 227 E a, b;
cannam@167 228 wa = W[0]; /* cos */
cannam@167 229 wb = W[1]; /* sin */
cannam@167 230 a = buf[i];
cannam@167 231 b = buf[n/2 + i];
cannam@167 232 O[os * i] = wa * a + wb * b;
cannam@167 233 O[os * (n - 1 - i)] = wb * a - wa * b;
cannam@167 234 }
cannam@167 235 ++i;
cannam@167 236 W += 2;
cannam@167 237 {
cannam@167 238 E wa, wb;
cannam@167 239 E a, b;
cannam@167 240 wa = W[0]; /* cos */
cannam@167 241 wb = W[1]; /* sin */
cannam@167 242 a = buf[i];
cannam@167 243 b = buf[n/2 + i];
cannam@167 244 O[os * i] = wa * a - wb * b;
cannam@167 245 O[os * (n - 1 - i)] = wb * a + wa * b;
cannam@167 246 }
cannam@167 247 }
cannam@167 248 if (i < n/2) {
cannam@167 249 E wa, wb;
cannam@167 250 E a, b;
cannam@167 251 wa = W[0]; /* cos */
cannam@167 252 wb = W[1]; /* sin */
cannam@167 253 a = buf[i];
cannam@167 254 b = buf[n/2 + i];
cannam@167 255 O[os * i] = wa * a + wb * b;
cannam@167 256 O[os * (n - 1 - i)] = wb * a - wa * b;
cannam@167 257 }
cannam@167 258 }
cannam@167 259
cannam@167 260 X(ifree)(buf);
cannam@167 261 }
cannam@167 262
cannam@167 263 #endif /* 0 */
cannam@167 264
cannam@167 265 /* like for rodft01, rodft11 is obtained from redft11 by
cannam@167 266 reversing the input and flipping the sign of every other output. */
cannam@167 267 static void apply_ro11(const plan *ego_, R *I, R *O)
cannam@167 268 {
cannam@167 269 const P *ego = (const P *) ego_;
cannam@167 270 INT is = ego->is, os = ego->os;
cannam@167 271 INT i, n = ego->n, n2 = n/2;
cannam@167 272 INT iv, vl = ego->vl;
cannam@167 273 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@167 274 R *W = ego->td->W;
cannam@167 275 R *W2;
cannam@167 276 R *buf;
cannam@167 277
cannam@167 278 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@167 279
cannam@167 280 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@167 281 buf[0] = K(2.0) * I[is * (n - 1)];
cannam@167 282 buf[n2] = K(2.0) * I[0];
cannam@167 283 for (i = 1; i + i < n2; ++i) {
cannam@167 284 INT k = i + i;
cannam@167 285 E a, b, a2, b2;
cannam@167 286 {
cannam@167 287 E u, v;
cannam@167 288 u = I[is * (n - k)];
cannam@167 289 v = I[is * (n - 1 - k)];
cannam@167 290 a = u + v;
cannam@167 291 b2 = u - v;
cannam@167 292 }
cannam@167 293 {
cannam@167 294 E u, v;
cannam@167 295 u = I[is * (k)];
cannam@167 296 v = I[is * (k - 1)];
cannam@167 297 b = u + v;
cannam@167 298 a2 = u - v;
cannam@167 299 }
cannam@167 300 {
cannam@167 301 E wa, wb;
cannam@167 302 wa = W[2*i];
cannam@167 303 wb = W[2*i + 1];
cannam@167 304 {
cannam@167 305 E apb, amb;
cannam@167 306 apb = a + b;
cannam@167 307 amb = a - b;
cannam@167 308 buf[i] = wa * amb + wb * apb;
cannam@167 309 buf[n2 - i] = wa * apb - wb * amb;
cannam@167 310 }
cannam@167 311 {
cannam@167 312 E apb, amb;
cannam@167 313 apb = a2 + b2;
cannam@167 314 amb = a2 - b2;
cannam@167 315 buf[n2 + i] = wa * amb + wb * apb;
cannam@167 316 buf[n - i] = wa * apb - wb * amb;
cannam@167 317 }
cannam@167 318 }
cannam@167 319 }
cannam@167 320 if (i + i == n2) {
cannam@167 321 E u, v;
cannam@167 322 u = I[is * n2];
cannam@167 323 v = I[is * (n2 - 1)];
cannam@167 324 buf[i] = (u + v) * (W[2*i] * K(2.0));
cannam@167 325 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
cannam@167 326 }
cannam@167 327
cannam@167 328
cannam@167 329 /* child plan: two r2hc's of size n/2 */
cannam@167 330 {
cannam@167 331 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@167 332 cld->apply((plan *) cld, buf, buf);
cannam@167 333 }
cannam@167 334
cannam@167 335 W2 = ego->td2->W;
cannam@167 336 { /* i == 0 case */
cannam@167 337 E wa, wb;
cannam@167 338 E a, b;
cannam@167 339 wa = W2[0]; /* cos */
cannam@167 340 wb = W2[1]; /* sin */
cannam@167 341 a = buf[0];
cannam@167 342 b = buf[n2];
cannam@167 343 O[0] = wa * a + wb * b;
cannam@167 344 O[os * (n - 1)] = wa * b - wb * a;
cannam@167 345 }
cannam@167 346 W2 += 2;
cannam@167 347 for (i = 1; i + i < n2; ++i, W2 += 2) {
cannam@167 348 INT k;
cannam@167 349 E u, v, u2, v2;
cannam@167 350 u = buf[i];
cannam@167 351 v = buf[n2 - i];
cannam@167 352 u2 = buf[n2 + i];
cannam@167 353 v2 = buf[n - i];
cannam@167 354 k = (i + i) - 1;
cannam@167 355 {
cannam@167 356 E wa, wb;
cannam@167 357 E a, b;
cannam@167 358 wa = W2[0]; /* cos */
cannam@167 359 wb = W2[1]; /* sin */
cannam@167 360 a = v - u;
cannam@167 361 b = u2 - v2;
cannam@167 362 O[os * k] = wa * a + wb * b;
cannam@167 363 O[os * (n - 1 - k)] = wa * b - wb * a;
cannam@167 364 }
cannam@167 365 ++k;
cannam@167 366 W2 += 2;
cannam@167 367 {
cannam@167 368 E wa, wb;
cannam@167 369 E a, b;
cannam@167 370 wa = W2[0]; /* cos */
cannam@167 371 wb = W2[1]; /* sin */
cannam@167 372 a = u + v;
cannam@167 373 b = u2 + v2;
cannam@167 374 O[os * k] = wa * a + wb * b;
cannam@167 375 O[os * (n - 1 - k)] = wa * b - wb * a;
cannam@167 376 }
cannam@167 377 }
cannam@167 378 if (i + i == n2) {
cannam@167 379 INT k = (i + i) - 1;
cannam@167 380 E wa, wb;
cannam@167 381 E a, b;
cannam@167 382 wa = W2[0]; /* cos */
cannam@167 383 wb = W2[1]; /* sin */
cannam@167 384 a = buf[i];
cannam@167 385 b = buf[n2 + i];
cannam@167 386 O[os * k] = wb * b - wa * a;
cannam@167 387 O[os * (n - 1 - k)] = wa * b + wb * a;
cannam@167 388 }
cannam@167 389 }
cannam@167 390
cannam@167 391 X(ifree)(buf);
cannam@167 392 }
cannam@167 393
cannam@167 394 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 395 {
cannam@167 396 P *ego = (P *) ego_;
cannam@167 397 static const tw_instr reodft010e_tw[] = {
cannam@167 398 { TW_COS, 0, 1 },
cannam@167 399 { TW_SIN, 0, 1 },
cannam@167 400 { TW_NEXT, 1, 0 }
cannam@167 401 };
cannam@167 402 static const tw_instr reodft11e_tw[] = {
cannam@167 403 { TW_COS, 1, 1 },
cannam@167 404 { TW_SIN, 1, 1 },
cannam@167 405 { TW_NEXT, 2, 0 }
cannam@167 406 };
cannam@167 407
cannam@167 408 X(plan_awake)(ego->cld, wakefulness);
cannam@167 409
cannam@167 410 X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw,
cannam@167 411 2*ego->n, 1, ego->n/4+1);
cannam@167 412 X(twiddle_awake)(wakefulness, &ego->td2, reodft11e_tw,
cannam@167 413 8*ego->n, 1, ego->n);
cannam@167 414 }
cannam@167 415
cannam@167 416 static void destroy(plan *ego_)
cannam@167 417 {
cannam@167 418 P *ego = (P *) ego_;
cannam@167 419 X(plan_destroy_internal)(ego->cld);
cannam@167 420 }
cannam@167 421
cannam@167 422 static void print(const plan *ego_, printer *p)
cannam@167 423 {
cannam@167 424 const P *ego = (const P *) ego_;
cannam@167 425 p->print(p, "(%se-radix2-r2hc-%D%v%(%p%))",
cannam@167 426 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
cannam@167 427 }
cannam@167 428
cannam@167 429 static int applicable0(const solver *ego_, const problem *p_)
cannam@167 430 {
cannam@167 431 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 432 UNUSED(ego_);
cannam@167 433
cannam@167 434 return (1
cannam@167 435 && p->sz->rnk == 1
cannam@167 436 && p->vecsz->rnk <= 1
cannam@167 437 && p->sz->dims[0].n % 2 == 0
cannam@167 438 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
cannam@167 439 );
cannam@167 440 }
cannam@167 441
cannam@167 442 static int applicable(const solver *ego, const problem *p, const planner *plnr)
cannam@167 443 {
cannam@167 444 return (!NO_SLOWP(plnr) && applicable0(ego, p));
cannam@167 445 }
cannam@167 446
cannam@167 447 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 448 {
cannam@167 449 P *pln;
cannam@167 450 const problem_rdft *p;
cannam@167 451 plan *cld;
cannam@167 452 R *buf;
cannam@167 453 INT n;
cannam@167 454 opcnt ops;
cannam@167 455
cannam@167 456 static const plan_adt padt = {
cannam@167 457 X(rdft_solve), awake, print, destroy
cannam@167 458 };
cannam@167 459
cannam@167 460 if (!applicable(ego_, p_, plnr))
cannam@167 461 return (plan *)0;
cannam@167 462
cannam@167 463 p = (const problem_rdft *) p_;
cannam@167 464
cannam@167 465 n = p->sz->dims[0].n;
cannam@167 466 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@167 467
cannam@167 468 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1),
cannam@167 469 X(mktensor_1d)(2, n/2, n/2),
cannam@167 470 buf, buf, R2HC));
cannam@167 471 X(ifree)(buf);
cannam@167 472 if (!cld)
cannam@167 473 return (plan *)0;
cannam@167 474
cannam@167 475 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
cannam@167 476 pln->n = n;
cannam@167 477 pln->is = p->sz->dims[0].is;
cannam@167 478 pln->os = p->sz->dims[0].os;
cannam@167 479 pln->cld = cld;
cannam@167 480 pln->td = pln->td2 = 0;
cannam@167 481 pln->kind = p->kind[0];
cannam@167 482
cannam@167 483 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@167 484
cannam@167 485 X(ops_zero)(&ops);
cannam@167 486 ops.add = 2 + (n/2 - 1)/2 * 20;
cannam@167 487 ops.mul = 6 + (n/2 - 1)/2 * 16;
cannam@167 488 ops.other = 4*n + 2 + (n/2 - 1)/2 * 6;
cannam@167 489 if ((n/2) % 2 == 0) {
cannam@167 490 ops.add += 4;
cannam@167 491 ops.mul += 8;
cannam@167 492 ops.other += 4;
cannam@167 493 }
cannam@167 494
cannam@167 495 X(ops_zero)(&pln->super.super.ops);
cannam@167 496 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
cannam@167 497 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
cannam@167 498
cannam@167 499 return &(pln->super.super);
cannam@167 500 }
cannam@167 501
cannam@167 502 /* constructor */
cannam@167 503 static solver *mksolver(void)
cannam@167 504 {
cannam@167 505 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@167 506 S *slv = MKSOLVER(S, &sadt);
cannam@167 507 return &(slv->super);
cannam@167 508 }
cannam@167 509
cannam@167 510 void X(reodft11e_radix2_r2hc_register)(planner *p)
cannam@167 511 {
cannam@167 512 REGISTER_SOLVER(p, mksolver());
cannam@167 513 }