cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: cannam@167: /* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems cannam@167: of half the size, plus some pre/post-processing. Use a trick from: cannam@167: cannam@167: Zhongde Wang, "On computing the discrete Fourier and cosine transforms," cannam@167: IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985). cannam@167: cannam@167: to re-express as a pair of half-size REDFT01 (DCT-III) problems. Our cannam@167: implementation looks quite a bit different from the algorithm described cannam@167: in the paper because we combined the paper's pre/post-processing with cannam@167: the pre/post-processing used to turn REDFT01 into R2HC. (Also, the cannam@167: paper uses a DCT/DST pair, but we turn the DST into a DCT via the cannam@167: usual reordering/sign-flip trick. We additionally combined a couple cannam@167: of the matrices/transformations of the paper into a single pass.) cannam@167: cannam@167: NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho cannam@167: that turned out to have numerical problems; see reodft11e-r2hc.c. cannam@167: cannam@167: (For odd sizes, see reodft11e-r2hc-odd.c.) cannam@167: */ cannam@167: cannam@167: #include "reodft/reodft.h" cannam@167: cannam@167: typedef struct { cannam@167: solver super; cannam@167: } S; cannam@167: cannam@167: typedef struct { cannam@167: plan_rdft super; cannam@167: plan *cld; cannam@167: twid *td, *td2; cannam@167: INT is, os; cannam@167: INT n; cannam@167: INT vl; cannam@167: INT ivs, ovs; cannam@167: rdft_kind kind; cannam@167: } P; cannam@167: cannam@167: static void apply_re11(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: INT is = ego->is, os = ego->os; cannam@167: INT i, n = ego->n, n2 = n/2; cannam@167: INT iv, vl = ego->vl; cannam@167: INT ivs = ego->ivs, ovs = ego->ovs; cannam@167: R *W = ego->td->W; cannam@167: R *W2; cannam@167: R *buf; cannam@167: cannam@167: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@167: cannam@167: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@167: buf[0] = K(2.0) * I[0]; cannam@167: buf[n2] = K(2.0) * I[is * (n - 1)]; cannam@167: for (i = 1; i + i < n2; ++i) { cannam@167: INT k = i + i; cannam@167: E a, b, a2, b2; cannam@167: { cannam@167: E u, v; cannam@167: u = I[is * (k - 1)]; cannam@167: v = I[is * k]; cannam@167: a = u + v; cannam@167: b2 = u - v; cannam@167: } cannam@167: { cannam@167: E u, v; cannam@167: u = I[is * (n - k - 1)]; cannam@167: v = I[is * (n - k)]; cannam@167: b = u + v; cannam@167: a2 = u - v; cannam@167: } cannam@167: { cannam@167: E wa, wb; cannam@167: wa = W[2*i]; cannam@167: wb = W[2*i + 1]; cannam@167: { cannam@167: E apb, amb; cannam@167: apb = a + b; cannam@167: amb = a - b; cannam@167: buf[i] = wa * amb + wb * apb; cannam@167: buf[n2 - i] = wa * apb - wb * amb; cannam@167: } cannam@167: { cannam@167: E apb, amb; cannam@167: apb = a2 + b2; cannam@167: amb = a2 - b2; cannam@167: buf[n2 + i] = wa * amb + wb * apb; cannam@167: buf[n - i] = wa * apb - wb * amb; cannam@167: } cannam@167: } cannam@167: } cannam@167: if (i + i == n2) { cannam@167: E u, v; cannam@167: u = I[is * (n2 - 1)]; cannam@167: v = I[is * n2]; cannam@167: buf[i] = (u + v) * (W[2*i] * K(2.0)); cannam@167: buf[n - i] = (u - v) * (W[2*i] * K(2.0)); cannam@167: } cannam@167: cannam@167: cannam@167: /* child plan: two r2hc's of size n/2 */ cannam@167: { cannam@167: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@167: cld->apply((plan *) cld, buf, buf); cannam@167: } cannam@167: cannam@167: W2 = ego->td2->W; cannam@167: { /* i == 0 case */ cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W2[0]; /* cos */ cannam@167: wb = W2[1]; /* sin */ cannam@167: a = buf[0]; cannam@167: b = buf[n2]; cannam@167: O[0] = wa * a + wb * b; cannam@167: O[os * (n - 1)] = wb * a - wa * b; cannam@167: } cannam@167: W2 += 2; cannam@167: for (i = 1; i + i < n2; ++i, W2 += 2) { cannam@167: INT k; cannam@167: E u, v, u2, v2; cannam@167: u = buf[i]; cannam@167: v = buf[n2 - i]; cannam@167: u2 = buf[n2 + i]; cannam@167: v2 = buf[n - i]; cannam@167: k = (i + i) - 1; cannam@167: { cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W2[0]; /* cos */ cannam@167: wb = W2[1]; /* sin */ cannam@167: a = u - v; cannam@167: b = v2 - u2; cannam@167: O[os * k] = wa * a + wb * b; cannam@167: O[os * (n - 1 - k)] = wb * a - wa * b; cannam@167: } cannam@167: ++k; cannam@167: W2 += 2; cannam@167: { cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W2[0]; /* cos */ cannam@167: wb = W2[1]; /* sin */ cannam@167: a = u + v; cannam@167: b = u2 + v2; cannam@167: O[os * k] = wa * a + wb * b; cannam@167: O[os * (n - 1 - k)] = wb * a - wa * b; cannam@167: } cannam@167: } cannam@167: if (i + i == n2) { cannam@167: INT k = (i + i) - 1; cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W2[0]; /* cos */ cannam@167: wb = W2[1]; /* sin */ cannam@167: a = buf[i]; cannam@167: b = buf[n2 + i]; cannam@167: O[os * k] = wa * a - wb * b; cannam@167: O[os * (n - 1 - k)] = wb * a + wa * b; cannam@167: } cannam@167: } cannam@167: cannam@167: X(ifree)(buf); cannam@167: } cannam@167: cannam@167: #if 0 cannam@167: cannam@167: /* This version of apply_re11 uses REDFT01 child plans, more similar cannam@167: to the original paper by Z. Wang. We keep it around for reference cannam@167: (it is simpler) and because it may become more efficient if we cannam@167: ever implement REDFT01 codelets. */ cannam@167: cannam@167: static void apply_re11(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: INT is = ego->is, os = ego->os; cannam@167: INT i, n = ego->n; cannam@167: INT iv, vl = ego->vl; cannam@167: INT ivs = ego->ivs, ovs = ego->ovs; cannam@167: R *W; cannam@167: R *buf; cannam@167: cannam@167: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@167: cannam@167: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@167: buf[0] = K(2.0) * I[0]; cannam@167: buf[n/2] = K(2.0) * I[is * (n - 1)]; cannam@167: for (i = 1; i + i < n; ++i) { cannam@167: INT k = i + i; cannam@167: E a, b; cannam@167: a = I[is * (k - 1)]; cannam@167: b = I[is * k]; cannam@167: buf[i] = a + b; cannam@167: buf[n - i] = a - b; cannam@167: } cannam@167: cannam@167: /* child plan: two redft01's (DCT-III) */ cannam@167: { cannam@167: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@167: cld->apply((plan *) cld, buf, buf); cannam@167: } cannam@167: cannam@167: W = ego->td2->W; cannam@167: for (i = 0; i + 1 < n/2; ++i, W += 2) { cannam@167: { cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W[0]; /* cos */ cannam@167: wb = W[1]; /* sin */ cannam@167: a = buf[i]; cannam@167: b = buf[n/2 + i]; cannam@167: O[os * i] = wa * a + wb * b; cannam@167: O[os * (n - 1 - i)] = wb * a - wa * b; cannam@167: } cannam@167: ++i; cannam@167: W += 2; cannam@167: { cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W[0]; /* cos */ cannam@167: wb = W[1]; /* sin */ cannam@167: a = buf[i]; cannam@167: b = buf[n/2 + i]; cannam@167: O[os * i] = wa * a - wb * b; cannam@167: O[os * (n - 1 - i)] = wb * a + wa * b; cannam@167: } cannam@167: } cannam@167: if (i < n/2) { cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W[0]; /* cos */ cannam@167: wb = W[1]; /* sin */ cannam@167: a = buf[i]; cannam@167: b = buf[n/2 + i]; cannam@167: O[os * i] = wa * a + wb * b; cannam@167: O[os * (n - 1 - i)] = wb * a - wa * b; cannam@167: } cannam@167: } cannam@167: cannam@167: X(ifree)(buf); cannam@167: } cannam@167: cannam@167: #endif /* 0 */ cannam@167: cannam@167: /* like for rodft01, rodft11 is obtained from redft11 by cannam@167: reversing the input and flipping the sign of every other output. */ cannam@167: static void apply_ro11(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: INT is = ego->is, os = ego->os; cannam@167: INT i, n = ego->n, n2 = n/2; cannam@167: INT iv, vl = ego->vl; cannam@167: INT ivs = ego->ivs, ovs = ego->ovs; cannam@167: R *W = ego->td->W; cannam@167: R *W2; cannam@167: R *buf; cannam@167: cannam@167: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@167: cannam@167: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@167: buf[0] = K(2.0) * I[is * (n - 1)]; cannam@167: buf[n2] = K(2.0) * I[0]; cannam@167: for (i = 1; i + i < n2; ++i) { cannam@167: INT k = i + i; cannam@167: E a, b, a2, b2; cannam@167: { cannam@167: E u, v; cannam@167: u = I[is * (n - k)]; cannam@167: v = I[is * (n - 1 - k)]; cannam@167: a = u + v; cannam@167: b2 = u - v; cannam@167: } cannam@167: { cannam@167: E u, v; cannam@167: u = I[is * (k)]; cannam@167: v = I[is * (k - 1)]; cannam@167: b = u + v; cannam@167: a2 = u - v; cannam@167: } cannam@167: { cannam@167: E wa, wb; cannam@167: wa = W[2*i]; cannam@167: wb = W[2*i + 1]; cannam@167: { cannam@167: E apb, amb; cannam@167: apb = a + b; cannam@167: amb = a - b; cannam@167: buf[i] = wa * amb + wb * apb; cannam@167: buf[n2 - i] = wa * apb - wb * amb; cannam@167: } cannam@167: { cannam@167: E apb, amb; cannam@167: apb = a2 + b2; cannam@167: amb = a2 - b2; cannam@167: buf[n2 + i] = wa * amb + wb * apb; cannam@167: buf[n - i] = wa * apb - wb * amb; cannam@167: } cannam@167: } cannam@167: } cannam@167: if (i + i == n2) { cannam@167: E u, v; cannam@167: u = I[is * n2]; cannam@167: v = I[is * (n2 - 1)]; cannam@167: buf[i] = (u + v) * (W[2*i] * K(2.0)); cannam@167: buf[n - i] = (u - v) * (W[2*i] * K(2.0)); cannam@167: } cannam@167: cannam@167: cannam@167: /* child plan: two r2hc's of size n/2 */ cannam@167: { cannam@167: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@167: cld->apply((plan *) cld, buf, buf); cannam@167: } cannam@167: cannam@167: W2 = ego->td2->W; cannam@167: { /* i == 0 case */ cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W2[0]; /* cos */ cannam@167: wb = W2[1]; /* sin */ cannam@167: a = buf[0]; cannam@167: b = buf[n2]; cannam@167: O[0] = wa * a + wb * b; cannam@167: O[os * (n - 1)] = wa * b - wb * a; cannam@167: } cannam@167: W2 += 2; cannam@167: for (i = 1; i + i < n2; ++i, W2 += 2) { cannam@167: INT k; cannam@167: E u, v, u2, v2; cannam@167: u = buf[i]; cannam@167: v = buf[n2 - i]; cannam@167: u2 = buf[n2 + i]; cannam@167: v2 = buf[n - i]; cannam@167: k = (i + i) - 1; cannam@167: { cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W2[0]; /* cos */ cannam@167: wb = W2[1]; /* sin */ cannam@167: a = v - u; cannam@167: b = u2 - v2; cannam@167: O[os * k] = wa * a + wb * b; cannam@167: O[os * (n - 1 - k)] = wa * b - wb * a; cannam@167: } cannam@167: ++k; cannam@167: W2 += 2; cannam@167: { cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W2[0]; /* cos */ cannam@167: wb = W2[1]; /* sin */ cannam@167: a = u + v; cannam@167: b = u2 + v2; cannam@167: O[os * k] = wa * a + wb * b; cannam@167: O[os * (n - 1 - k)] = wa * b - wb * a; cannam@167: } cannam@167: } cannam@167: if (i + i == n2) { cannam@167: INT k = (i + i) - 1; cannam@167: E wa, wb; cannam@167: E a, b; cannam@167: wa = W2[0]; /* cos */ cannam@167: wb = W2[1]; /* sin */ cannam@167: a = buf[i]; cannam@167: b = buf[n2 + i]; cannam@167: O[os * k] = wb * b - wa * a; cannam@167: O[os * (n - 1 - k)] = wa * b + wb * a; cannam@167: } cannam@167: } cannam@167: cannam@167: X(ifree)(buf); cannam@167: } cannam@167: cannam@167: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: static const tw_instr reodft010e_tw[] = { cannam@167: { TW_COS, 0, 1 }, cannam@167: { TW_SIN, 0, 1 }, cannam@167: { TW_NEXT, 1, 0 } cannam@167: }; cannam@167: static const tw_instr reodft11e_tw[] = { cannam@167: { TW_COS, 1, 1 }, cannam@167: { TW_SIN, 1, 1 }, cannam@167: { TW_NEXT, 2, 0 } cannam@167: }; cannam@167: cannam@167: X(plan_awake)(ego->cld, wakefulness); cannam@167: cannam@167: X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw, cannam@167: 2*ego->n, 1, ego->n/4+1); cannam@167: X(twiddle_awake)(wakefulness, &ego->td2, reodft11e_tw, cannam@167: 8*ego->n, 1, ego->n); cannam@167: } cannam@167: cannam@167: static void destroy(plan *ego_) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(plan_destroy_internal)(ego->cld); cannam@167: } cannam@167: cannam@167: static void print(const plan *ego_, printer *p) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: p->print(p, "(%se-radix2-r2hc-%D%v%(%p%))", cannam@167: X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); cannam@167: } cannam@167: cannam@167: static int applicable0(const solver *ego_, const problem *p_) cannam@167: { cannam@167: const problem_rdft *p = (const problem_rdft *) p_; cannam@167: UNUSED(ego_); cannam@167: cannam@167: return (1 cannam@167: && p->sz->rnk == 1 cannam@167: && p->vecsz->rnk <= 1 cannam@167: && p->sz->dims[0].n % 2 == 0 cannam@167: && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) cannam@167: ); cannam@167: } cannam@167: cannam@167: static int applicable(const solver *ego, const problem *p, const planner *plnr) cannam@167: { cannam@167: return (!NO_SLOWP(plnr) && applicable0(ego, p)); cannam@167: } cannam@167: cannam@167: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@167: { cannam@167: P *pln; cannam@167: const problem_rdft *p; cannam@167: plan *cld; cannam@167: R *buf; cannam@167: INT n; cannam@167: opcnt ops; cannam@167: cannam@167: static const plan_adt padt = { cannam@167: X(rdft_solve), awake, print, destroy cannam@167: }; cannam@167: cannam@167: if (!applicable(ego_, p_, plnr)) cannam@167: return (plan *)0; cannam@167: cannam@167: p = (const problem_rdft *) p_; cannam@167: cannam@167: n = p->sz->dims[0].n; cannam@167: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@167: cannam@167: cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1), cannam@167: X(mktensor_1d)(2, n/2, n/2), cannam@167: buf, buf, R2HC)); cannam@167: X(ifree)(buf); cannam@167: if (!cld) cannam@167: return (plan *)0; cannam@167: cannam@167: pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); cannam@167: pln->n = n; cannam@167: pln->is = p->sz->dims[0].is; cannam@167: pln->os = p->sz->dims[0].os; cannam@167: pln->cld = cld; cannam@167: pln->td = pln->td2 = 0; cannam@167: pln->kind = p->kind[0]; cannam@167: cannam@167: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); cannam@167: cannam@167: X(ops_zero)(&ops); cannam@167: ops.add = 2 + (n/2 - 1)/2 * 20; cannam@167: ops.mul = 6 + (n/2 - 1)/2 * 16; cannam@167: ops.other = 4*n + 2 + (n/2 - 1)/2 * 6; cannam@167: if ((n/2) % 2 == 0) { cannam@167: ops.add += 4; cannam@167: ops.mul += 8; cannam@167: ops.other += 4; cannam@167: } cannam@167: cannam@167: X(ops_zero)(&pln->super.super.ops); cannam@167: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); cannam@167: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); cannam@167: cannam@167: return &(pln->super.super); cannam@167: } cannam@167: cannam@167: /* constructor */ cannam@167: static solver *mksolver(void) cannam@167: { cannam@167: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@167: S *slv = MKSOLVER(S, &sadt); cannam@167: return &(slv->super); cannam@167: } cannam@167: cannam@167: void X(reodft11e_radix2_r2hc_register)(planner *p) cannam@167: { cannam@167: REGISTER_SOLVER(p, mksolver()); cannam@167: }