annotate src/fftw-3.3.3/rdft/rdft2-rdft.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21
cannam@95 22 #include "rdft.h"
cannam@95 23
cannam@95 24 typedef struct {
cannam@95 25 solver super;
cannam@95 26 } S;
cannam@95 27
cannam@95 28 typedef struct {
cannam@95 29 plan_rdft2 super;
cannam@95 30
cannam@95 31 plan *cld, *cldrest;
cannam@95 32 INT n, vl, nbuf, bufdist;
cannam@95 33 INT cs, ivs, ovs;
cannam@95 34 } P;
cannam@95 35
cannam@95 36 /***************************************************************************/
cannam@95 37
cannam@95 38 /* FIXME: have alternate copy functions that push a vector loop inside
cannam@95 39 the n loops? */
cannam@95 40
cannam@95 41 /* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */
cannam@95 42 static void hc2c(INT n, R *r, R *rio, R *iio, INT os)
cannam@95 43 {
cannam@95 44 INT i;
cannam@95 45
cannam@95 46 rio[0] = r[0];
cannam@95 47 iio[0] = 0;
cannam@95 48
cannam@95 49 for (i = 1; i + i < n; ++i) {
cannam@95 50 rio[i * os] = r[i];
cannam@95 51 iio[i * os] = r[n - i];
cannam@95 52 }
cannam@95 53
cannam@95 54 if (i + i == n) { /* store the Nyquist frequency */
cannam@95 55 rio[i * os] = r[i];
cannam@95 56 iio[i * os] = K(0.0);
cannam@95 57 }
cannam@95 58 }
cannam@95 59
cannam@95 60 /* reverse of hc2c */
cannam@95 61 static void c2hc(INT n, R *rio, R *iio, INT is, R *r)
cannam@95 62 {
cannam@95 63 INT i;
cannam@95 64
cannam@95 65 r[0] = rio[0];
cannam@95 66
cannam@95 67 for (i = 1; i + i < n; ++i) {
cannam@95 68 r[i] = rio[i * is];
cannam@95 69 r[n - i] = iio[i * is];
cannam@95 70 }
cannam@95 71
cannam@95 72 if (i + i == n) /* store the Nyquist frequency */
cannam@95 73 r[i] = rio[i * is];
cannam@95 74 }
cannam@95 75
cannam@95 76 /***************************************************************************/
cannam@95 77
cannam@95 78 static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
cannam@95 79 {
cannam@95 80 const P *ego = (const P *) ego_;
cannam@95 81 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@95 82 INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
cannam@95 83 INT n = ego->n;
cannam@95 84 INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs;
cannam@95 85 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
cannam@95 86 plan_rdft2 *cldrest;
cannam@95 87
cannam@95 88 for (i = nbuf; i <= vl; i += nbuf) {
cannam@95 89 /* transform to bufs: */
cannam@95 90 cld->apply((plan *) cld, r0, bufs);
cannam@95 91 r0 += ivs * nbuf; r1 += ivs * nbuf;
cannam@95 92
cannam@95 93 /* copy back */
cannam@95 94 for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs)
cannam@95 95 hc2c(n, bufs + j*bufdist, cr, ci, os);
cannam@95 96 }
cannam@95 97
cannam@95 98 X(ifree)(bufs);
cannam@95 99
cannam@95 100 /* Do the remaining transforms, if any: */
cannam@95 101 cldrest = (plan_rdft2 *) ego->cldrest;
cannam@95 102 cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
cannam@95 103 }
cannam@95 104
cannam@95 105 static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
cannam@95 106 {
cannam@95 107 const P *ego = (const P *) ego_;
cannam@95 108 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@95 109 INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
cannam@95 110 INT n = ego->n;
cannam@95 111 INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs;
cannam@95 112 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
cannam@95 113 plan_rdft2 *cldrest;
cannam@95 114
cannam@95 115 for (i = nbuf; i <= vl; i += nbuf) {
cannam@95 116 /* copy to bufs */
cannam@95 117 for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs)
cannam@95 118 c2hc(n, cr, ci, is, bufs + j*bufdist);
cannam@95 119
cannam@95 120 /* transform back: */
cannam@95 121 cld->apply((plan *) cld, bufs, r0);
cannam@95 122 r0 += ovs * nbuf; r1 += ovs * nbuf;
cannam@95 123 }
cannam@95 124
cannam@95 125 X(ifree)(bufs);
cannam@95 126
cannam@95 127 /* Do the remaining transforms, if any: */
cannam@95 128 cldrest = (plan_rdft2 *) ego->cldrest;
cannam@95 129 cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
cannam@95 130 }
cannam@95 131
cannam@95 132 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 133 {
cannam@95 134 P *ego = (P *) ego_;
cannam@95 135
cannam@95 136 X(plan_awake)(ego->cld, wakefulness);
cannam@95 137 X(plan_awake)(ego->cldrest, wakefulness);
cannam@95 138 }
cannam@95 139
cannam@95 140 static void destroy(plan *ego_)
cannam@95 141 {
cannam@95 142 P *ego = (P *) ego_;
cannam@95 143 X(plan_destroy_internal)(ego->cldrest);
cannam@95 144 X(plan_destroy_internal)(ego->cld);
cannam@95 145 }
cannam@95 146
cannam@95 147 static void print(const plan *ego_, printer *p)
cannam@95 148 {
cannam@95 149 const P *ego = (const P *) ego_;
cannam@95 150 p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))",
cannam@95 151 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
cannam@95 152 ego->n, ego->nbuf,
cannam@95 153 ego->vl, ego->bufdist % ego->n,
cannam@95 154 ego->cld, ego->cldrest);
cannam@95 155 }
cannam@95 156
cannam@95 157 static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl)
cannam@95 158 {
cannam@95 159 INT is, os, ivs, ovs;
cannam@95 160
cannam@95 161 if (p->r0 != p->cr)
cannam@95 162 return 1;
cannam@95 163 if (X(rdft2_inplace_strides(p, RNK_MINFTY)))
cannam@95 164 return 1;
cannam@95 165 A(p->vecsz->rnk == 1); /* rank 0 and MINFTY are inplace */
cannam@95 166
cannam@95 167 X(rdft2_strides)(p->kind, p->sz->dims, &is, &os);
cannam@95 168 X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs);
cannam@95 169
cannam@95 170 /* handle one potentially common case: "contiguous" real and
cannam@95 171 complex arrays, which overlap because of the differing sizes. */
cannam@95 172 if (n * X(iabs)(is) <= X(iabs)(ivs)
cannam@95 173 && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs)
cannam@95 174 && ( ((p->cr - p->ci) <= X(iabs)(os)) ||
cannam@95 175 ((p->ci - p->cr) <= X(iabs)(os)) )
cannam@95 176 && ivs > 0 && ovs > 0) {
cannam@95 177 INT vsmin = X(imin)(ivs, ovs);
cannam@95 178 INT vsmax = X(imax)(ivs, ovs);
cannam@95 179 return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin);
cannam@95 180 }
cannam@95 181
cannam@95 182 return vl; /* punt: just buffer the whole vector */
cannam@95 183 }
cannam@95 184
cannam@95 185 static int applicable0(const problem *p_, const S *ego, const planner *plnr)
cannam@95 186 {
cannam@95 187 const problem_rdft2 *p = (const problem_rdft2 *) p_;
cannam@95 188 UNUSED(ego);
cannam@95 189 return(1
cannam@95 190 && p->vecsz->rnk <= 1
cannam@95 191 && p->sz->rnk == 1
cannam@95 192
cannam@95 193 /* FIXME: does it make sense to do R2HCII ? */
cannam@95 194 && (p->kind == R2HC || p->kind == HC2R)
cannam@95 195
cannam@95 196 /* real strides must allow for reduction to rdft */
cannam@95 197 && (2 * (p->r1 - p->r0) ==
cannam@95 198 (((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os)))
cannam@95 199
cannam@95 200 && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr))
cannam@95 201 );
cannam@95 202 }
cannam@95 203
cannam@95 204 static int applicable(const problem *p_, const S *ego, const planner *plnr)
cannam@95 205 {
cannam@95 206 const problem_rdft2 *p;
cannam@95 207
cannam@95 208 if (NO_BUFFERINGP(plnr)) return 0;
cannam@95 209
cannam@95 210 if (!applicable0(p_, ego, plnr)) return 0;
cannam@95 211
cannam@95 212 p = (const problem_rdft2 *) p_;
cannam@95 213 if (NO_UGLYP(plnr)) {
cannam@95 214 if (p->r0 != p->cr) return 0;
cannam@95 215 if (X(toobig)(p->sz->dims[0].n)) return 0;
cannam@95 216 }
cannam@95 217 return 1;
cannam@95 218 }
cannam@95 219
cannam@95 220 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 221 {
cannam@95 222 const S *ego = (const S *) ego_;
cannam@95 223 P *pln;
cannam@95 224 plan *cld = (plan *) 0;
cannam@95 225 plan *cldrest = (plan *) 0;
cannam@95 226 const problem_rdft2 *p = (const problem_rdft2 *) p_;
cannam@95 227 R *bufs = (R *) 0;
cannam@95 228 INT nbuf = 0, bufdist, n, vl;
cannam@95 229 INT ivs, ovs, rs, id, od;
cannam@95 230
cannam@95 231 static const plan_adt padt = {
cannam@95 232 X(rdft2_solve), awake, print, destroy
cannam@95 233 };
cannam@95 234
cannam@95 235 if (!applicable(p_, ego, plnr))
cannam@95 236 goto nada;
cannam@95 237
cannam@95 238 n = p->sz->dims[0].n;
cannam@95 239 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
cannam@95 240
cannam@95 241 nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl));
cannam@95 242 bufdist = X(bufdist)(n, vl);
cannam@95 243 A(nbuf > 0);
cannam@95 244
cannam@95 245 /* initial allocation for the purpose of planning */
cannam@95 246 bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
cannam@95 247
cannam@95 248 id = ivs * (nbuf * (vl / nbuf));
cannam@95 249 od = ovs * (nbuf * (vl / nbuf));
cannam@95 250
cannam@95 251 if (p->kind == R2HC) {
cannam@95 252 cld = X(mkplan_f_d)(
cannam@95 253 plnr,
cannam@95 254 X(mkproblem_rdft_d)(
cannam@95 255 X(mktensor_1d)(n, p->sz->dims[0].is/2, 1),
cannam@95 256 X(mktensor_1d)(nbuf, ivs, bufdist),
cannam@95 257 TAINT(p->r0, ivs * nbuf), bufs, &p->kind),
cannam@95 258 0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0);
cannam@95 259 if (!cld) goto nada;
cannam@95 260 X(ifree)(bufs); bufs = 0;
cannam@95 261
cannam@95 262 cldrest = X(mkplan_d)(plnr,
cannam@95 263 X(mkproblem_rdft2_d)(
cannam@95 264 X(tensor_copy)(p->sz),
cannam@95 265 X(mktensor_1d)(vl % nbuf, ivs, ovs),
cannam@95 266 p->r0 + id, p->r1 + id,
cannam@95 267 p->cr + od, p->ci + od,
cannam@95 268 p->kind));
cannam@95 269 if (!cldrest) goto nada;
cannam@95 270
cannam@95 271 pln = MKPLAN_RDFT2(P, &padt, apply_r2hc);
cannam@95 272 } else {
cannam@95 273 A(p->kind == HC2R);
cannam@95 274 cld = X(mkplan_f_d)(
cannam@95 275 plnr,
cannam@95 276 X(mkproblem_rdft_d)(
cannam@95 277 X(mktensor_1d)(n, 1, p->sz->dims[0].os/2),
cannam@95 278 X(mktensor_1d)(nbuf, bufdist, ovs),
cannam@95 279 bufs, TAINT(p->r0, ovs * nbuf), &p->kind),
cannam@95 280 0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */
cannam@95 281 if (!cld) goto nada;
cannam@95 282 X(ifree)(bufs); bufs = 0;
cannam@95 283
cannam@95 284 cldrest = X(mkplan_d)(plnr,
cannam@95 285 X(mkproblem_rdft2_d)(
cannam@95 286 X(tensor_copy)(p->sz),
cannam@95 287 X(mktensor_1d)(vl % nbuf, ivs, ovs),
cannam@95 288 p->r0 + od, p->r1 + od,
cannam@95 289 p->cr + id, p->ci + id,
cannam@95 290 p->kind));
cannam@95 291 if (!cldrest) goto nada;
cannam@95 292 pln = MKPLAN_RDFT2(P, &padt, apply_hc2r);
cannam@95 293 }
cannam@95 294
cannam@95 295 pln->cld = cld;
cannam@95 296 pln->cldrest = cldrest;
cannam@95 297 pln->n = n;
cannam@95 298 pln->vl = vl;
cannam@95 299 pln->ivs = ivs;
cannam@95 300 pln->ovs = ovs;
cannam@95 301 X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs);
cannam@95 302 pln->nbuf = nbuf;
cannam@95 303 pln->bufdist = bufdist;
cannam@95 304
cannam@95 305 X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops,
cannam@95 306 &pln->super.super.ops);
cannam@95 307 pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl;
cannam@95 308
cannam@95 309 return &(pln->super.super);
cannam@95 310
cannam@95 311 nada:
cannam@95 312 X(ifree0)(bufs);
cannam@95 313 X(plan_destroy_internal)(cldrest);
cannam@95 314 X(plan_destroy_internal)(cld);
cannam@95 315 return (plan *) 0;
cannam@95 316 }
cannam@95 317
cannam@95 318 static solver *mksolver(void)
cannam@95 319 {
cannam@95 320 static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
cannam@95 321 S *slv = MKSOLVER(S, &sadt);
cannam@95 322 return &(slv->super);
cannam@95 323 }
cannam@95 324
cannam@95 325 void X(rdft2_rdft_register)(planner *p)
cannam@95 326 {
cannam@95 327 REGISTER_SOLVER(p, mksolver());
cannam@95 328 }