cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: cannam@95: #include "rdft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_rdft2 super; cannam@95: cannam@95: plan *cld, *cldrest; cannam@95: INT n, vl, nbuf, bufdist; cannam@95: INT cs, ivs, ovs; cannam@95: } P; cannam@95: cannam@95: /***************************************************************************/ cannam@95: cannam@95: /* FIXME: have alternate copy functions that push a vector loop inside cannam@95: the n loops? */ cannam@95: cannam@95: /* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */ cannam@95: static void hc2c(INT n, R *r, R *rio, R *iio, INT os) cannam@95: { cannam@95: INT i; cannam@95: cannam@95: rio[0] = r[0]; cannam@95: iio[0] = 0; cannam@95: cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: rio[i * os] = r[i]; cannam@95: iio[i * os] = r[n - i]; cannam@95: } cannam@95: cannam@95: if (i + i == n) { /* store the Nyquist frequency */ cannam@95: rio[i * os] = r[i]; cannam@95: iio[i * os] = K(0.0); cannam@95: } cannam@95: } cannam@95: cannam@95: /* reverse of hc2c */ cannam@95: static void c2hc(INT n, R *rio, R *iio, INT is, R *r) cannam@95: { cannam@95: INT i; cannam@95: cannam@95: r[0] = rio[0]; cannam@95: cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: r[i] = rio[i * is]; cannam@95: r[n - i] = iio[i * is]; cannam@95: } cannam@95: cannam@95: if (i + i == n) /* store the Nyquist frequency */ cannam@95: r[i] = rio[i * is]; cannam@95: } cannam@95: cannam@95: /***************************************************************************/ cannam@95: cannam@95: static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@95: INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist; cannam@95: INT n = ego->n; cannam@95: INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs; cannam@95: R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); cannam@95: plan_rdft2 *cldrest; cannam@95: cannam@95: for (i = nbuf; i <= vl; i += nbuf) { cannam@95: /* transform to bufs: */ cannam@95: cld->apply((plan *) cld, r0, bufs); cannam@95: r0 += ivs * nbuf; r1 += ivs * nbuf; cannam@95: cannam@95: /* copy back */ cannam@95: for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs) cannam@95: hc2c(n, bufs + j*bufdist, cr, ci, os); cannam@95: } cannam@95: cannam@95: X(ifree)(bufs); cannam@95: cannam@95: /* Do the remaining transforms, if any: */ cannam@95: cldrest = (plan_rdft2 *) ego->cldrest; cannam@95: cldrest->apply((plan *) cldrest, r0, r1, cr, ci); cannam@95: } cannam@95: cannam@95: static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@95: INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist; cannam@95: INT n = ego->n; cannam@95: INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs; cannam@95: R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); cannam@95: plan_rdft2 *cldrest; cannam@95: cannam@95: for (i = nbuf; i <= vl; i += nbuf) { cannam@95: /* copy to bufs */ cannam@95: for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs) cannam@95: c2hc(n, cr, ci, is, bufs + j*bufdist); cannam@95: cannam@95: /* transform back: */ cannam@95: cld->apply((plan *) cld, bufs, r0); cannam@95: r0 += ovs * nbuf; r1 += ovs * nbuf; cannam@95: } cannam@95: cannam@95: X(ifree)(bufs); cannam@95: cannam@95: /* Do the remaining transforms, if any: */ cannam@95: cldrest = (plan_rdft2 *) ego->cldrest; cannam@95: cldrest->apply((plan *) cldrest, r0, r1, cr, ci); cannam@95: } cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: cannam@95: X(plan_awake)(ego->cld, wakefulness); cannam@95: X(plan_awake)(ego->cldrest, wakefulness); cannam@95: } cannam@95: cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_destroy_internal)(ego->cldrest); cannam@95: X(plan_destroy_internal)(ego->cld); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))", cannam@95: ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", cannam@95: ego->n, ego->nbuf, cannam@95: ego->vl, ego->bufdist % ego->n, cannam@95: ego->cld, ego->cldrest); cannam@95: } cannam@95: cannam@95: static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl) cannam@95: { cannam@95: INT is, os, ivs, ovs; cannam@95: cannam@95: if (p->r0 != p->cr) cannam@95: return 1; cannam@95: if (X(rdft2_inplace_strides(p, RNK_MINFTY))) cannam@95: return 1; cannam@95: A(p->vecsz->rnk == 1); /* rank 0 and MINFTY are inplace */ cannam@95: cannam@95: X(rdft2_strides)(p->kind, p->sz->dims, &is, &os); cannam@95: X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs); cannam@95: cannam@95: /* handle one potentially common case: "contiguous" real and cannam@95: complex arrays, which overlap because of the differing sizes. */ cannam@95: if (n * X(iabs)(is) <= X(iabs)(ivs) cannam@95: && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs) cannam@95: && ( ((p->cr - p->ci) <= X(iabs)(os)) || cannam@95: ((p->ci - p->cr) <= X(iabs)(os)) ) cannam@95: && ivs > 0 && ovs > 0) { cannam@95: INT vsmin = X(imin)(ivs, ovs); cannam@95: INT vsmax = X(imax)(ivs, ovs); cannam@95: return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin); cannam@95: } cannam@95: cannam@95: return vl; /* punt: just buffer the whole vector */ cannam@95: } cannam@95: cannam@95: static int applicable0(const problem *p_, const S *ego, const planner *plnr) cannam@95: { cannam@95: const problem_rdft2 *p = (const problem_rdft2 *) p_; cannam@95: UNUSED(ego); cannam@95: return(1 cannam@95: && p->vecsz->rnk <= 1 cannam@95: && p->sz->rnk == 1 cannam@95: cannam@95: /* FIXME: does it make sense to do R2HCII ? */ cannam@95: && (p->kind == R2HC || p->kind == HC2R) cannam@95: cannam@95: /* real strides must allow for reduction to rdft */ cannam@95: && (2 * (p->r1 - p->r0) == cannam@95: (((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os))) cannam@95: cannam@95: && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr)) cannam@95: ); cannam@95: } cannam@95: cannam@95: static int applicable(const problem *p_, const S *ego, const planner *plnr) cannam@95: { cannam@95: const problem_rdft2 *p; cannam@95: cannam@95: if (NO_BUFFERINGP(plnr)) return 0; cannam@95: cannam@95: if (!applicable0(p_, ego, plnr)) return 0; cannam@95: cannam@95: p = (const problem_rdft2 *) p_; cannam@95: if (NO_UGLYP(plnr)) { cannam@95: if (p->r0 != p->cr) return 0; cannam@95: if (X(toobig)(p->sz->dims[0].n)) return 0; cannam@95: } cannam@95: return 1; cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: const S *ego = (const S *) ego_; cannam@95: P *pln; cannam@95: plan *cld = (plan *) 0; cannam@95: plan *cldrest = (plan *) 0; cannam@95: const problem_rdft2 *p = (const problem_rdft2 *) p_; cannam@95: R *bufs = (R *) 0; cannam@95: INT nbuf = 0, bufdist, n, vl; cannam@95: INT ivs, ovs, rs, id, od; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(rdft2_solve), awake, print, destroy cannam@95: }; cannam@95: cannam@95: if (!applicable(p_, ego, plnr)) cannam@95: goto nada; cannam@95: cannam@95: n = p->sz->dims[0].n; cannam@95: X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); cannam@95: cannam@95: nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl)); cannam@95: bufdist = X(bufdist)(n, vl); cannam@95: A(nbuf > 0); cannam@95: cannam@95: /* initial allocation for the purpose of planning */ cannam@95: bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); cannam@95: cannam@95: id = ivs * (nbuf * (vl / nbuf)); cannam@95: od = ovs * (nbuf * (vl / nbuf)); cannam@95: cannam@95: if (p->kind == R2HC) { cannam@95: cld = X(mkplan_f_d)( cannam@95: plnr, cannam@95: X(mkproblem_rdft_d)( cannam@95: X(mktensor_1d)(n, p->sz->dims[0].is/2, 1), cannam@95: X(mktensor_1d)(nbuf, ivs, bufdist), cannam@95: TAINT(p->r0, ivs * nbuf), bufs, &p->kind), cannam@95: 0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0); cannam@95: if (!cld) goto nada; cannam@95: X(ifree)(bufs); bufs = 0; cannam@95: cannam@95: cldrest = X(mkplan_d)(plnr, cannam@95: X(mkproblem_rdft2_d)( cannam@95: X(tensor_copy)(p->sz), cannam@95: X(mktensor_1d)(vl % nbuf, ivs, ovs), cannam@95: p->r0 + id, p->r1 + id, cannam@95: p->cr + od, p->ci + od, cannam@95: p->kind)); cannam@95: if (!cldrest) goto nada; cannam@95: cannam@95: pln = MKPLAN_RDFT2(P, &padt, apply_r2hc); cannam@95: } else { cannam@95: A(p->kind == HC2R); cannam@95: cld = X(mkplan_f_d)( cannam@95: plnr, cannam@95: X(mkproblem_rdft_d)( cannam@95: X(mktensor_1d)(n, 1, p->sz->dims[0].os/2), cannam@95: X(mktensor_1d)(nbuf, bufdist, ovs), cannam@95: bufs, TAINT(p->r0, ovs * nbuf), &p->kind), cannam@95: 0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */ cannam@95: if (!cld) goto nada; cannam@95: X(ifree)(bufs); bufs = 0; cannam@95: cannam@95: cldrest = X(mkplan_d)(plnr, cannam@95: X(mkproblem_rdft2_d)( cannam@95: X(tensor_copy)(p->sz), cannam@95: X(mktensor_1d)(vl % nbuf, ivs, ovs), cannam@95: p->r0 + od, p->r1 + od, cannam@95: p->cr + id, p->ci + id, cannam@95: p->kind)); cannam@95: if (!cldrest) goto nada; cannam@95: pln = MKPLAN_RDFT2(P, &padt, apply_hc2r); cannam@95: } cannam@95: cannam@95: pln->cld = cld; cannam@95: pln->cldrest = cldrest; cannam@95: pln->n = n; cannam@95: pln->vl = vl; cannam@95: pln->ivs = ivs; cannam@95: pln->ovs = ovs; cannam@95: X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs); cannam@95: pln->nbuf = nbuf; cannam@95: pln->bufdist = bufdist; cannam@95: cannam@95: X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops, cannam@95: &pln->super.super.ops); cannam@95: pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl; cannam@95: cannam@95: return &(pln->super.super); cannam@95: cannam@95: nada: cannam@95: X(ifree0)(bufs); cannam@95: X(plan_destroy_internal)(cldrest); cannam@95: X(plan_destroy_internal)(cld); cannam@95: return (plan *) 0; cannam@95: } cannam@95: cannam@95: static solver *mksolver(void) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void X(rdft2_rdft_register)(planner *p) cannam@95: { cannam@95: REGISTER_SOLVER(p, mksolver()); cannam@95: }