annotate src/fftw-3.3.8/reodft/reodft11e-r2hc.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21
Chris@82 22 /* Do an R{E,O}DFT11 problem via an R2HC problem, with some
Chris@82 23 pre/post-processing ala FFTPACK. Use a trick from:
Chris@82 24
Chris@82 25 S. C. Chan and K. L. Ho, "Direct methods for computing discrete
Chris@82 26 sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
Chris@82 27
Chris@82 28 to re-express as an REDFT01 (DCT-III) problem.
Chris@82 29
Chris@82 30 NOTE: We no longer use this algorithm, because it turns out to suffer
Chris@82 31 a catastrophic loss of accuracy for certain inputs, apparently because
Chris@82 32 its post-processing multiplies the output by a cosine. Near the zero
Chris@82 33 of the cosine, the REDFT01 must produce a near-singular output.
Chris@82 34 */
Chris@82 35
Chris@82 36 #include "reodft/reodft.h"
Chris@82 37
Chris@82 38 typedef struct {
Chris@82 39 solver super;
Chris@82 40 } S;
Chris@82 41
Chris@82 42 typedef struct {
Chris@82 43 plan_rdft super;
Chris@82 44 plan *cld;
Chris@82 45 twid *td, *td2;
Chris@82 46 INT is, os;
Chris@82 47 INT n;
Chris@82 48 INT vl;
Chris@82 49 INT ivs, ovs;
Chris@82 50 rdft_kind kind;
Chris@82 51 } P;
Chris@82 52
Chris@82 53 static void apply_re11(const plan *ego_, R *I, R *O)
Chris@82 54 {
Chris@82 55 const P *ego = (const P *) ego_;
Chris@82 56 INT is = ego->is, os = ego->os;
Chris@82 57 INT i, n = ego->n;
Chris@82 58 INT iv, vl = ego->vl;
Chris@82 59 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@82 60 R *W;
Chris@82 61 R *buf;
Chris@82 62 E cur;
Chris@82 63
Chris@82 64 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@82 65
Chris@82 66 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@82 67 /* I wish that this didn't require an extra pass. */
Chris@82 68 /* FIXME: use recursive/cascade summation for better stability? */
Chris@82 69 buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
Chris@82 70 for (i = n - 1; i > 0; --i) {
Chris@82 71 E curnew;
Chris@82 72 buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
Chris@82 73 cur = curnew;
Chris@82 74 }
Chris@82 75
Chris@82 76 W = ego->td->W;
Chris@82 77 for (i = 1; i < n - i; ++i) {
Chris@82 78 E a, b, apb, amb, wa, wb;
Chris@82 79 a = buf[i];
Chris@82 80 b = buf[n - i];
Chris@82 81 apb = a + b;
Chris@82 82 amb = a - b;
Chris@82 83 wa = W[2*i];
Chris@82 84 wb = W[2*i + 1];
Chris@82 85 buf[i] = wa * amb + wb * apb;
Chris@82 86 buf[n - i] = wa * apb - wb * amb;
Chris@82 87 }
Chris@82 88 if (i == n - i) {
Chris@82 89 buf[i] = K(2.0) * buf[i] * W[2*i];
Chris@82 90 }
Chris@82 91
Chris@82 92 {
Chris@82 93 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@82 94 cld->apply((plan *) cld, buf, buf);
Chris@82 95 }
Chris@82 96
Chris@82 97 W = ego->td2->W;
Chris@82 98 O[0] = W[0] * buf[0];
Chris@82 99 for (i = 1; i < n - i; ++i) {
Chris@82 100 E a, b;
Chris@82 101 INT k;
Chris@82 102 a = buf[i];
Chris@82 103 b = buf[n - i];
Chris@82 104 k = i + i;
Chris@82 105 O[os * (k - 1)] = W[k - 1] * (a - b);
Chris@82 106 O[os * k] = W[k] * (a + b);
Chris@82 107 }
Chris@82 108 if (i == n - i) {
Chris@82 109 O[os * (n - 1)] = W[n - 1] * buf[i];
Chris@82 110 }
Chris@82 111 }
Chris@82 112
Chris@82 113 X(ifree)(buf);
Chris@82 114 }
Chris@82 115
Chris@82 116 /* like for rodft01, rodft11 is obtained from redft11 by
Chris@82 117 reversing the input and flipping the sign of every other output. */
Chris@82 118 static void apply_ro11(const plan *ego_, R *I, R *O)
Chris@82 119 {
Chris@82 120 const P *ego = (const P *) ego_;
Chris@82 121 INT is = ego->is, os = ego->os;
Chris@82 122 INT i, n = ego->n;
Chris@82 123 INT iv, vl = ego->vl;
Chris@82 124 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@82 125 R *W;
Chris@82 126 R *buf;
Chris@82 127 E cur;
Chris@82 128
Chris@82 129 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@82 130
Chris@82 131 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@82 132 /* I wish that this didn't require an extra pass. */
Chris@82 133 /* FIXME: use recursive/cascade summation for better stability? */
Chris@82 134 buf[n - 1] = cur = K(2.0) * I[0];
Chris@82 135 for (i = n - 1; i > 0; --i) {
Chris@82 136 E curnew;
Chris@82 137 buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
Chris@82 138 cur = curnew;
Chris@82 139 }
Chris@82 140
Chris@82 141 W = ego->td->W;
Chris@82 142 for (i = 1; i < n - i; ++i) {
Chris@82 143 E a, b, apb, amb, wa, wb;
Chris@82 144 a = buf[i];
Chris@82 145 b = buf[n - i];
Chris@82 146 apb = a + b;
Chris@82 147 amb = a - b;
Chris@82 148 wa = W[2*i];
Chris@82 149 wb = W[2*i + 1];
Chris@82 150 buf[i] = wa * amb + wb * apb;
Chris@82 151 buf[n - i] = wa * apb - wb * amb;
Chris@82 152 }
Chris@82 153 if (i == n - i) {
Chris@82 154 buf[i] = K(2.0) * buf[i] * W[2*i];
Chris@82 155 }
Chris@82 156
Chris@82 157 {
Chris@82 158 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@82 159 cld->apply((plan *) cld, buf, buf);
Chris@82 160 }
Chris@82 161
Chris@82 162 W = ego->td2->W;
Chris@82 163 O[0] = W[0] * buf[0];
Chris@82 164 for (i = 1; i < n - i; ++i) {
Chris@82 165 E a, b;
Chris@82 166 INT k;
Chris@82 167 a = buf[i];
Chris@82 168 b = buf[n - i];
Chris@82 169 k = i + i;
Chris@82 170 O[os * (k - 1)] = W[k - 1] * (b - a);
Chris@82 171 O[os * k] = W[k] * (a + b);
Chris@82 172 }
Chris@82 173 if (i == n - i) {
Chris@82 174 O[os * (n - 1)] = -W[n - 1] * buf[i];
Chris@82 175 }
Chris@82 176 }
Chris@82 177
Chris@82 178 X(ifree)(buf);
Chris@82 179 }
Chris@82 180
Chris@82 181 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@82 182 {
Chris@82 183 P *ego = (P *) ego_;
Chris@82 184 static const tw_instr reodft010e_tw[] = {
Chris@82 185 { TW_COS, 0, 1 },
Chris@82 186 { TW_SIN, 0, 1 },
Chris@82 187 { TW_NEXT, 1, 0 }
Chris@82 188 };
Chris@82 189 static const tw_instr reodft11e_tw[] = {
Chris@82 190 { TW_COS, 1, 1 },
Chris@82 191 { TW_NEXT, 2, 0 }
Chris@82 192 };
Chris@82 193
Chris@82 194 X(plan_awake)(ego->cld, wakefulness);
Chris@82 195
Chris@82 196 X(twiddle_awake)(wakefulness,
Chris@82 197 &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
Chris@82 198 X(twiddle_awake)(wakefulness,
Chris@82 199 &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
Chris@82 200 }
Chris@82 201
Chris@82 202 static void destroy(plan *ego_)
Chris@82 203 {
Chris@82 204 P *ego = (P *) ego_;
Chris@82 205 X(plan_destroy_internal)(ego->cld);
Chris@82 206 }
Chris@82 207
Chris@82 208 static void print(const plan *ego_, printer *p)
Chris@82 209 {
Chris@82 210 const P *ego = (const P *) ego_;
Chris@82 211 p->print(p, "(%se-r2hc-%D%v%(%p%))",
Chris@82 212 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
Chris@82 213 }
Chris@82 214
Chris@82 215 static int applicable0(const solver *ego_, const problem *p_)
Chris@82 216 {
Chris@82 217 const problem_rdft *p = (const problem_rdft *) p_;
Chris@82 218
Chris@82 219 UNUSED(ego_);
Chris@82 220
Chris@82 221 return (1
Chris@82 222 && p->sz->rnk == 1
Chris@82 223 && p->vecsz->rnk <= 1
Chris@82 224 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
Chris@82 225 );
Chris@82 226 }
Chris@82 227
Chris@82 228 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@82 229 {
Chris@82 230 return (!NO_SLOWP(plnr) && applicable0(ego, p));
Chris@82 231 }
Chris@82 232
Chris@82 233 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@82 234 {
Chris@82 235 P *pln;
Chris@82 236 const problem_rdft *p;
Chris@82 237 plan *cld;
Chris@82 238 R *buf;
Chris@82 239 INT n;
Chris@82 240 opcnt ops;
Chris@82 241
Chris@82 242 static const plan_adt padt = {
Chris@82 243 X(rdft_solve), awake, print, destroy
Chris@82 244 };
Chris@82 245
Chris@82 246 if (!applicable(ego_, p_, plnr))
Chris@82 247 return (plan *)0;
Chris@82 248
Chris@82 249 p = (const problem_rdft *) p_;
Chris@82 250
Chris@82 251 n = p->sz->dims[0].n;
Chris@82 252 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@82 253
Chris@82 254 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
Chris@82 255 X(mktensor_0d)(),
Chris@82 256 buf, buf, R2HC));
Chris@82 257 X(ifree)(buf);
Chris@82 258 if (!cld)
Chris@82 259 return (plan *)0;
Chris@82 260
Chris@82 261 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
Chris@82 262 pln->n = n;
Chris@82 263 pln->is = p->sz->dims[0].is;
Chris@82 264 pln->os = p->sz->dims[0].os;
Chris@82 265 pln->cld = cld;
Chris@82 266 pln->td = pln->td2 = 0;
Chris@82 267 pln->kind = p->kind[0];
Chris@82 268
Chris@82 269 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@82 270
Chris@82 271 X(ops_zero)(&ops);
Chris@82 272 ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
Chris@82 273 ops.add = (n - 1) * 1 + (n-1)/2 * 6;
Chris@82 274 ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
Chris@82 275
Chris@82 276 X(ops_zero)(&pln->super.super.ops);
Chris@82 277 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
Chris@82 278 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
Chris@82 279
Chris@82 280 return &(pln->super.super);
Chris@82 281 }
Chris@82 282
Chris@82 283 /* constructor */
Chris@82 284 static solver *mksolver(void)
Chris@82 285 {
Chris@82 286 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@82 287 S *slv = MKSOLVER(S, &sadt);
Chris@82 288 return &(slv->super);
Chris@82 289 }
Chris@82 290
Chris@82 291 void X(reodft11e_r2hc_register)(planner *p)
Chris@82 292 {
Chris@82 293 REGISTER_SOLVER(p, mksolver());
Chris@82 294 }