annotate src/fftw-3.3.8/rdft/vrank3-transpose.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21
Chris@82 22 /* rank-0, vector-rank-3, non-square in-place transposition
Chris@82 23 (see rank0.c for square transposition) */
Chris@82 24
Chris@82 25 #include "rdft/rdft.h"
Chris@82 26
Chris@82 27 #ifdef HAVE_STRING_H
Chris@82 28 #include <string.h> /* for memcpy() */
Chris@82 29 #endif
Chris@82 30
Chris@82 31 struct P_s;
Chris@82 32
Chris@82 33 typedef struct {
Chris@82 34 rdftapply apply;
Chris@82 35 int (*applicable)(const problem_rdft *p, planner *plnr,
Chris@82 36 int dim0, int dim1, int dim2, INT *nbuf);
Chris@82 37 int (*mkcldrn)(const problem_rdft *p, planner *plnr, struct P_s *ego);
Chris@82 38 const char *nam;
Chris@82 39 } transpose_adt;
Chris@82 40
Chris@82 41 typedef struct {
Chris@82 42 solver super;
Chris@82 43 const transpose_adt *adt;
Chris@82 44 } S;
Chris@82 45
Chris@82 46 typedef struct P_s {
Chris@82 47 plan_rdft super;
Chris@82 48 INT n, m, vl; /* transpose n x m matrix of vl-tuples */
Chris@82 49 INT nbuf; /* buffer size */
Chris@82 50 INT nd, md, d; /* transpose-gcd params */
Chris@82 51 INT nc, mc; /* transpose-cut params */
Chris@82 52 plan *cld1, *cld2, *cld3; /* children, null if unused */
Chris@82 53 const S *slv;
Chris@82 54 } P;
Chris@82 55
Chris@82 56
Chris@82 57 /*************************************************************************/
Chris@82 58 /* some utilities for the solvers */
Chris@82 59
Chris@82 60 static INT gcd(INT a, INT b)
Chris@82 61 {
Chris@82 62 INT r;
Chris@82 63 do {
Chris@82 64 r = a % b;
Chris@82 65 a = b;
Chris@82 66 b = r;
Chris@82 67 } while (r != 0);
Chris@82 68
Chris@82 69 return a;
Chris@82 70 }
Chris@82 71
Chris@82 72 /* whether we can transpose with one of our routines expecting
Chris@82 73 contiguous Ntuples */
Chris@82 74 static int Ntuple_transposable(const iodim *a, const iodim *b, INT vl, INT vs)
Chris@82 75 {
Chris@82 76 return (vs == 1 && b->is == vl && a->os == vl &&
Chris@82 77 ((a->n == b->n && a->is == b->os
Chris@82 78 && a->is >= b->n && a->is % vl == 0)
Chris@82 79 || (a->is == b->n * vl && b->os == a->n * vl)));
Chris@82 80 }
Chris@82 81
Chris@82 82 /* check whether a and b correspond to the first and second dimensions
Chris@82 83 of a transpose of tuples with vector length = vl, stride = vs. */
Chris@82 84 static int transposable(const iodim *a, const iodim *b, INT vl, INT vs)
Chris@82 85 {
Chris@82 86 return ((a->n == b->n && a->os == b->is && a->is == b->os)
Chris@82 87 || Ntuple_transposable(a, b, vl, vs));
Chris@82 88 }
Chris@82 89
Chris@82 90 static int pickdim(const tensor *s, int *pdim0, int *pdim1, int *pdim2)
Chris@82 91 {
Chris@82 92 int dim0, dim1;
Chris@82 93
Chris@82 94 for (dim0 = 0; dim0 < s->rnk; ++dim0)
Chris@82 95 for (dim1 = 0; dim1 < s->rnk; ++dim1) {
Chris@82 96 int dim2 = 3 - dim0 - dim1;
Chris@82 97 if (dim0 == dim1) continue;
Chris@82 98 if ((s->rnk == 2 || s->dims[dim2].is == s->dims[dim2].os)
Chris@82 99 && transposable(s->dims + dim0, s->dims + dim1,
Chris@82 100 s->rnk == 2 ? (INT)1 : s->dims[dim2].n,
Chris@82 101 s->rnk == 2 ? (INT)1 : s->dims[dim2].is)) {
Chris@82 102 *pdim0 = dim0;
Chris@82 103 *pdim1 = dim1;
Chris@82 104 *pdim2 = dim2;
Chris@82 105 return 1;
Chris@82 106 }
Chris@82 107 }
Chris@82 108 return 0;
Chris@82 109 }
Chris@82 110
Chris@82 111 #define MINBUFDIV 9 /* min factor by which buffer is smaller than data */
Chris@82 112 #define MAXBUF 65536 /* maximum non-ugly buffer */
Chris@82 113
Chris@82 114 /* generic applicability function */
Chris@82 115 static int applicable(const solver *ego_, const problem *p_, planner *plnr,
Chris@82 116 int *dim0, int *dim1, int *dim2, INT *nbuf)
Chris@82 117 {
Chris@82 118 const S *ego = (const S *) ego_;
Chris@82 119 const problem_rdft *p = (const problem_rdft *) p_;
Chris@82 120
Chris@82 121 return (1
Chris@82 122 && p->I == p->O
Chris@82 123 && p->sz->rnk == 0
Chris@82 124 && (p->vecsz->rnk == 2 || p->vecsz->rnk == 3)
Chris@82 125
Chris@82 126 && pickdim(p->vecsz, dim0, dim1, dim2)
Chris@82 127
Chris@82 128 /* UGLY if vecloop in wrong order for locality */
Chris@82 129 && (!NO_UGLYP(plnr) ||
Chris@82 130 p->vecsz->rnk == 2 ||
Chris@82 131 X(iabs)(p->vecsz->dims[*dim2].is)
Chris@82 132 < X(imax)(X(iabs)(p->vecsz->dims[*dim0].is),
Chris@82 133 X(iabs)(p->vecsz->dims[*dim0].os)))
Chris@82 134
Chris@82 135 /* SLOW if non-square */
Chris@82 136 && (!NO_SLOWP(plnr)
Chris@82 137 || p->vecsz->dims[*dim0].n == p->vecsz->dims[*dim1].n)
Chris@82 138
Chris@82 139 && ego->adt->applicable(p, plnr, *dim0,*dim1,*dim2,nbuf)
Chris@82 140
Chris@82 141 /* buffers too big are UGLY */
Chris@82 142 && ((!NO_UGLYP(plnr) && !CONSERVE_MEMORYP(plnr))
Chris@82 143 || *nbuf <= MAXBUF
Chris@82 144 || *nbuf * MINBUFDIV <= X(tensor_sz)(p->vecsz))
Chris@82 145 );
Chris@82 146 }
Chris@82 147
Chris@82 148 static void get_transpose_vec(const problem_rdft *p, int dim2, INT *vl,INT *vs)
Chris@82 149 {
Chris@82 150 if (p->vecsz->rnk == 2) {
Chris@82 151 *vl = 1; *vs = 1;
Chris@82 152 }
Chris@82 153 else {
Chris@82 154 *vl = p->vecsz->dims[dim2].n;
Chris@82 155 *vs = p->vecsz->dims[dim2].is; /* == os */
Chris@82 156 }
Chris@82 157 }
Chris@82 158
Chris@82 159 /*************************************************************************/
Chris@82 160 /* Cache-oblivious in-place transpose of non-square matrices, based
Chris@82 161 on transposes of blocks given by the gcd of the dimensions.
Chris@82 162
Chris@82 163 This algorithm is related to algorithm V5 from Murray Dow,
Chris@82 164 "Transposing a matrix on a vector computer," Parallel Computing 21
Chris@82 165 (12), 1997-2005 (1995), with the modification that we use
Chris@82 166 cache-oblivious recursive transpose subroutines (and we derived
Chris@82 167 it independently).
Chris@82 168
Chris@82 169 For a p x q matrix, this requires scratch space equal to the size
Chris@82 170 of the matrix divided by gcd(p,q). Alternatively, see also the
Chris@82 171 "cut" algorithm below, if |p-q| * gcd(p,q) < max(p,q). */
Chris@82 172
Chris@82 173 static void apply_gcd(const plan *ego_, R *I, R *O)
Chris@82 174 {
Chris@82 175 const P *ego = (const P *) ego_;
Chris@82 176 INT n = ego->nd, m = ego->md, d = ego->d;
Chris@82 177 INT vl = ego->vl;
Chris@82 178 R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
Chris@82 179 INT i, num_el = n*m*d*vl;
Chris@82 180
Chris@82 181 A(ego->n == n * d && ego->m == m * d);
Chris@82 182 UNUSED(O);
Chris@82 183
Chris@82 184 /* Transpose the matrix I in-place, where I is an (n*d) x (m*d) matrix
Chris@82 185 of vl-tuples and buf contains n*m*d*vl elements.
Chris@82 186
Chris@82 187 In general, to transpose a p x q matrix, you should call this
Chris@82 188 routine with d = gcd(p, q), n = p/d, and m = q/d. */
Chris@82 189
Chris@82 190 A(n > 0 && m > 0 && vl > 0);
Chris@82 191 A(d > 1);
Chris@82 192
Chris@82 193 /* treat as (d x n) x (d' x m) matrix. (d' = d) */
Chris@82 194
Chris@82 195 /* First, transpose d x (n x d') x m to d x (d' x n) x m,
Chris@82 196 using the buf matrix. This consists of d transposes
Chris@82 197 of contiguous n x d' matrices of m-tuples. */
Chris@82 198 if (n > 1) {
Chris@82 199 rdftapply cldapply = ((plan_rdft *) ego->cld1)->apply;
Chris@82 200 for (i = 0; i < d; ++i) {
Chris@82 201 cldapply(ego->cld1, I + i*num_el, buf);
Chris@82 202 memcpy(I + i*num_el, buf, num_el*sizeof(R));
Chris@82 203 }
Chris@82 204 }
Chris@82 205
Chris@82 206 /* Now, transpose (d x d') x (n x m) to (d' x d) x (n x m), which
Chris@82 207 is a square in-place transpose of n*m-tuples: */
Chris@82 208 {
Chris@82 209 rdftapply cldapply = ((plan_rdft *) ego->cld2)->apply;
Chris@82 210 cldapply(ego->cld2, I, I);
Chris@82 211 }
Chris@82 212
Chris@82 213 /* Finally, transpose d' x ((d x n) x m) to d' x (m x (d x n)),
Chris@82 214 using the buf matrix. This consists of d' transposes
Chris@82 215 of contiguous d*n x m matrices. */
Chris@82 216 if (m > 1) {
Chris@82 217 rdftapply cldapply = ((plan_rdft *) ego->cld3)->apply;
Chris@82 218 for (i = 0; i < d; ++i) {
Chris@82 219 cldapply(ego->cld3, I + i*num_el, buf);
Chris@82 220 memcpy(I + i*num_el, buf, num_el*sizeof(R));
Chris@82 221 }
Chris@82 222 }
Chris@82 223
Chris@82 224 X(ifree)(buf);
Chris@82 225 }
Chris@82 226
Chris@82 227 static int applicable_gcd(const problem_rdft *p, planner *plnr,
Chris@82 228 int dim0, int dim1, int dim2, INT *nbuf)
Chris@82 229 {
Chris@82 230 INT n = p->vecsz->dims[dim0].n;
Chris@82 231 INT m = p->vecsz->dims[dim1].n;
Chris@82 232 INT d, vl, vs;
Chris@82 233 get_transpose_vec(p, dim2, &vl, &vs);
Chris@82 234 d = gcd(n, m);
Chris@82 235 *nbuf = n * (m / d) * vl;
Chris@82 236 return (!NO_SLOWP(plnr) /* FIXME: not really SLOW for large 1d ffts */
Chris@82 237 && n != m
Chris@82 238 && d > 1
Chris@82 239 && Ntuple_transposable(p->vecsz->dims + dim0,
Chris@82 240 p->vecsz->dims + dim1,
Chris@82 241 vl, vs));
Chris@82 242 }
Chris@82 243
Chris@82 244 static int mkcldrn_gcd(const problem_rdft *p, planner *plnr, P *ego)
Chris@82 245 {
Chris@82 246 INT n = ego->nd, m = ego->md, d = ego->d;
Chris@82 247 INT vl = ego->vl;
Chris@82 248 R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
Chris@82 249 INT num_el = n*m*d*vl;
Chris@82 250
Chris@82 251 if (n > 1) {
Chris@82 252 ego->cld1 = X(mkplan_d)(plnr,
Chris@82 253 X(mkproblem_rdft_0_d)(
Chris@82 254 X(mktensor_3d)(n, d*m*vl, m*vl,
Chris@82 255 d, m*vl, n*m*vl,
Chris@82 256 m*vl, 1, 1),
Chris@82 257 TAINT(p->I, num_el), buf));
Chris@82 258 if (!ego->cld1)
Chris@82 259 goto nada;
Chris@82 260 X(ops_madd)(d, &ego->cld1->ops, &ego->super.super.ops,
Chris@82 261 &ego->super.super.ops);
Chris@82 262 ego->super.super.ops.other += num_el * d * 2;
Chris@82 263 }
Chris@82 264
Chris@82 265 ego->cld2 = X(mkplan_d)(plnr,
Chris@82 266 X(mkproblem_rdft_0_d)(
Chris@82 267 X(mktensor_3d)(d, d*n*m*vl, n*m*vl,
Chris@82 268 d, n*m*vl, d*n*m*vl,
Chris@82 269 n*m*vl, 1, 1),
Chris@82 270 p->I, p->I));
Chris@82 271 if (!ego->cld2)
Chris@82 272 goto nada;
Chris@82 273 X(ops_add2)(&ego->cld2->ops, &ego->super.super.ops);
Chris@82 274
Chris@82 275 if (m > 1) {
Chris@82 276 ego->cld3 = X(mkplan_d)(plnr,
Chris@82 277 X(mkproblem_rdft_0_d)(
Chris@82 278 X(mktensor_3d)(d*n, m*vl, vl,
Chris@82 279 m, vl, d*n*vl,
Chris@82 280 vl, 1, 1),
Chris@82 281 TAINT(p->I, num_el), buf));
Chris@82 282 if (!ego->cld3)
Chris@82 283 goto nada;
Chris@82 284 X(ops_madd2)(d, &ego->cld3->ops, &ego->super.super.ops);
Chris@82 285 ego->super.super.ops.other += num_el * d * 2;
Chris@82 286 }
Chris@82 287
Chris@82 288 X(ifree)(buf);
Chris@82 289 return 1;
Chris@82 290
Chris@82 291 nada:
Chris@82 292 X(ifree)(buf);
Chris@82 293 return 0;
Chris@82 294 }
Chris@82 295
Chris@82 296 static const transpose_adt adt_gcd =
Chris@82 297 {
Chris@82 298 apply_gcd, applicable_gcd, mkcldrn_gcd,
Chris@82 299 "rdft-transpose-gcd"
Chris@82 300 };
Chris@82 301
Chris@82 302 /*************************************************************************/
Chris@82 303 /* Cache-oblivious in-place transpose of non-square n x m matrices,
Chris@82 304 based on transposing a sub-matrix first and then transposing the
Chris@82 305 remainder(s) with the help of a buffer. See also transpose-gcd,
Chris@82 306 above, if gcd(n,m) is large.
Chris@82 307
Chris@82 308 This algorithm is related to algorithm V3 from Murray Dow,
Chris@82 309 "Transposing a matrix on a vector computer," Parallel Computing 21
Chris@82 310 (12), 1997-2005 (1995), with the modifications that we use
Chris@82 311 cache-oblivious recursive transpose subroutines and we have the
Chris@82 312 generalization for large |n-m| below.
Chris@82 313
Chris@82 314 The best case, and the one described by Dow, is for |n-m| small, in
Chris@82 315 which case we transpose a square sub-matrix of size min(n,m),
Chris@82 316 handling the remainder via a buffer. This requires scratch space
Chris@82 317 equal to the size of the matrix times |n-m| / max(n,m).
Chris@82 318
Chris@82 319 As a generalization when |n-m| is not small, we also support cutting
Chris@82 320 *both* dimensions to an nc x mc matrix which is *not* necessarily
Chris@82 321 square, but has a large gcd (and can therefore use transpose-gcd).
Chris@82 322 */
Chris@82 323
Chris@82 324 static void apply_cut(const plan *ego_, R *I, R *O)
Chris@82 325 {
Chris@82 326 const P *ego = (const P *) ego_;
Chris@82 327 INT n = ego->n, m = ego->m, nc = ego->nc, mc = ego->mc, vl = ego->vl;
Chris@82 328 INT i;
Chris@82 329 R *buf1 = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
Chris@82 330 UNUSED(O);
Chris@82 331
Chris@82 332 if (m > mc) {
Chris@82 333 ((plan_rdft *) ego->cld1)->apply(ego->cld1, I + mc*vl, buf1);
Chris@82 334 for (i = 0; i < nc; ++i)
Chris@82 335 memmove(I + (mc*vl) * i, I + (m*vl) * i, sizeof(R) * (mc*vl));
Chris@82 336 }
Chris@82 337
Chris@82 338 ((plan_rdft *) ego->cld2)->apply(ego->cld2, I, I); /* nc x mc transpose */
Chris@82 339
Chris@82 340 if (n > nc) {
Chris@82 341 R *buf2 = buf1 + (m-mc)*(nc*vl); /* FIXME: force better alignment? */
Chris@82 342 memcpy(buf2, I + nc*(m*vl), (n-nc)*(m*vl)*sizeof(R));
Chris@82 343 for (i = mc-1; i >= 0; --i)
Chris@82 344 memmove(I + (n*vl) * i, I + (nc*vl) * i, sizeof(R) * (n*vl));
Chris@82 345 ((plan_rdft *) ego->cld3)->apply(ego->cld3, buf2, I + nc*vl);
Chris@82 346 }
Chris@82 347
Chris@82 348 if (m > mc) {
Chris@82 349 if (n > nc)
Chris@82 350 for (i = mc; i < m; ++i)
Chris@82 351 memcpy(I + i*(n*vl), buf1 + (i-mc)*(nc*vl),
Chris@82 352 (nc*vl)*sizeof(R));
Chris@82 353 else
Chris@82 354 memcpy(I + mc*(n*vl), buf1, (m-mc)*(n*vl)*sizeof(R));
Chris@82 355 }
Chris@82 356
Chris@82 357 X(ifree)(buf1);
Chris@82 358 }
Chris@82 359
Chris@82 360 /* only cut one dimension if the resulting buffer is small enough */
Chris@82 361 static int cut1(INT n, INT m, INT vl)
Chris@82 362 {
Chris@82 363 return (X(imax)(n,m) >= X(iabs)(n-m) * MINBUFDIV
Chris@82 364 || X(imin)(n,m) * X(iabs)(n-m) * vl <= MAXBUF);
Chris@82 365 }
Chris@82 366
Chris@82 367 #define CUT_NSRCH 32 /* range of sizes to search for possible cuts */
Chris@82 368
Chris@82 369 static int applicable_cut(const problem_rdft *p, planner *plnr,
Chris@82 370 int dim0, int dim1, int dim2, INT *nbuf)
Chris@82 371 {
Chris@82 372 INT n = p->vecsz->dims[dim0].n;
Chris@82 373 INT m = p->vecsz->dims[dim1].n;
Chris@82 374 INT vl, vs;
Chris@82 375 get_transpose_vec(p, dim2, &vl, &vs);
Chris@82 376 *nbuf = 0; /* always small enough to be non-UGLY (?) */
Chris@82 377 A(MINBUFDIV <= CUT_NSRCH); /* assumed to avoid inf. loops below */
Chris@82 378 return (!NO_SLOWP(plnr) /* FIXME: not really SLOW for large 1d ffts? */
Chris@82 379 && n != m
Chris@82 380
Chris@82 381 /* Don't call transpose-cut recursively (avoid inf. loops):
Chris@82 382 the non-square sub-transpose produced when !cut1
Chris@82 383 should always have gcd(n,m) >= min(CUT_NSRCH,n,m),
Chris@82 384 for which transpose-gcd is applicable */
Chris@82 385 && (cut1(n, m, vl)
Chris@82 386 || gcd(n, m) < X(imin)(MINBUFDIV, X(imin)(n,m)))
Chris@82 387
Chris@82 388 && Ntuple_transposable(p->vecsz->dims + dim0,
Chris@82 389 p->vecsz->dims + dim1,
Chris@82 390 vl, vs));
Chris@82 391 }
Chris@82 392
Chris@82 393 static int mkcldrn_cut(const problem_rdft *p, planner *plnr, P *ego)
Chris@82 394 {
Chris@82 395 INT n = ego->n, m = ego->m, nc, mc;
Chris@82 396 INT vl = ego->vl;
Chris@82 397 R *buf;
Chris@82 398
Chris@82 399 /* pick the "best" cut */
Chris@82 400 if (cut1(n, m, vl)) {
Chris@82 401 nc = mc = X(imin)(n,m);
Chris@82 402 }
Chris@82 403 else {
Chris@82 404 INT dc, ns, ms;
Chris@82 405 dc = gcd(m, n); nc = n; mc = m;
Chris@82 406 /* search for cut with largest gcd
Chris@82 407 (TODO: different optimality criteria? different search range?) */
Chris@82 408 for (ms = m; ms > 0 && ms > m - CUT_NSRCH; --ms) {
Chris@82 409 for (ns = n; ns > 0 && ns > n - CUT_NSRCH; --ns) {
Chris@82 410 INT ds = gcd(ms, ns);
Chris@82 411 if (ds > dc) {
Chris@82 412 dc = ds; nc = ns; mc = ms;
Chris@82 413 if (dc == X(imin)(ns, ms))
Chris@82 414 break; /* cannot get larger than this */
Chris@82 415 }
Chris@82 416 }
Chris@82 417 if (dc == X(imin)(n, ms))
Chris@82 418 break; /* cannot get larger than this */
Chris@82 419 }
Chris@82 420 A(dc >= X(imin)(CUT_NSRCH, X(imin)(n, m)));
Chris@82 421 }
Chris@82 422 ego->nc = nc;
Chris@82 423 ego->mc = mc;
Chris@82 424 ego->nbuf = (m-mc)*(nc*vl) + (n-nc)*(m*vl);
Chris@82 425
Chris@82 426 buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
Chris@82 427
Chris@82 428 if (m > mc) {
Chris@82 429 ego->cld1 = X(mkplan_d)(plnr,
Chris@82 430 X(mkproblem_rdft_0_d)(
Chris@82 431 X(mktensor_3d)(nc, m*vl, vl,
Chris@82 432 m-mc, vl, nc*vl,
Chris@82 433 vl, 1, 1),
Chris@82 434 p->I + mc*vl, buf));
Chris@82 435 if (!ego->cld1)
Chris@82 436 goto nada;
Chris@82 437 X(ops_add2)(&ego->cld1->ops, &ego->super.super.ops);
Chris@82 438 }
Chris@82 439
Chris@82 440 ego->cld2 = X(mkplan_d)(plnr,
Chris@82 441 X(mkproblem_rdft_0_d)(
Chris@82 442 X(mktensor_3d)(nc, mc*vl, vl,
Chris@82 443 mc, vl, nc*vl,
Chris@82 444 vl, 1, 1),
Chris@82 445 p->I, p->I));
Chris@82 446 if (!ego->cld2)
Chris@82 447 goto nada;
Chris@82 448 X(ops_add2)(&ego->cld2->ops, &ego->super.super.ops);
Chris@82 449
Chris@82 450 if (n > nc) {
Chris@82 451 ego->cld3 = X(mkplan_d)(plnr,
Chris@82 452 X(mkproblem_rdft_0_d)(
Chris@82 453 X(mktensor_3d)(n-nc, m*vl, vl,
Chris@82 454 m, vl, n*vl,
Chris@82 455 vl, 1, 1),
Chris@82 456 buf + (m-mc)*(nc*vl), p->I + nc*vl));
Chris@82 457 if (!ego->cld3)
Chris@82 458 goto nada;
Chris@82 459 X(ops_add2)(&ego->cld3->ops, &ego->super.super.ops);
Chris@82 460 }
Chris@82 461
Chris@82 462 /* memcpy/memmove operations */
Chris@82 463 ego->super.super.ops.other += 2 * vl * (nc*mc * ((m > mc) + (n > nc))
Chris@82 464 + (n-nc)*m + (m-mc)*nc);
Chris@82 465
Chris@82 466 X(ifree)(buf);
Chris@82 467 return 1;
Chris@82 468
Chris@82 469 nada:
Chris@82 470 X(ifree)(buf);
Chris@82 471 return 0;
Chris@82 472 }
Chris@82 473
Chris@82 474 static const transpose_adt adt_cut =
Chris@82 475 {
Chris@82 476 apply_cut, applicable_cut, mkcldrn_cut,
Chris@82 477 "rdft-transpose-cut"
Chris@82 478 };
Chris@82 479
Chris@82 480 /*************************************************************************/
Chris@82 481 /* In-place transpose routine from TOMS, which follows the cycles of
Chris@82 482 the permutation so that it writes to each location only once.
Chris@82 483 Because of cache-line and other issues, however, this routine is
Chris@82 484 typically much slower than transpose-gcd or transpose-cut, even
Chris@82 485 though the latter do some extra writes. On the other hand, if the
Chris@82 486 vector length is large then the TOMS routine is best.
Chris@82 487
Chris@82 488 The TOMS routine also has the advantage of requiring less buffer
Chris@82 489 space for the case of gcd(nx,ny) small. However, in this case it
Chris@82 490 has been superseded by the combination of the generalized
Chris@82 491 transpose-cut method with the transpose-gcd method, which can
Chris@82 492 always transpose with buffers a small fraction of the array size
Chris@82 493 regardless of gcd(nx,ny). */
Chris@82 494
Chris@82 495 /*
Chris@82 496 * TOMS Transpose. Algorithm 513 (Revised version of algorithm 380).
Chris@82 497 *
Chris@82 498 * These routines do in-place transposes of arrays.
Chris@82 499 *
Chris@82 500 * [ Cate, E.G. and Twigg, D.W., ACM Transactions on Mathematical Software,
Chris@82 501 * vol. 3, no. 1, 104-110 (1977) ]
Chris@82 502 *
Chris@82 503 * C version by Steven G. Johnson (February 1997).
Chris@82 504 */
Chris@82 505
Chris@82 506 /*
Chris@82 507 * "a" is a 1D array of length ny*nx*N which constains the nx x ny
Chris@82 508 * matrix of N-tuples to be transposed. "a" is stored in row-major
Chris@82 509 * order (last index varies fastest). move is a 1D array of length
Chris@82 510 * move_size used to store information to speed up the process. The
Chris@82 511 * value move_size=(ny+nx)/2 is recommended. buf should be an array
Chris@82 512 * of length 2*N.
Chris@82 513 *
Chris@82 514 */
Chris@82 515
Chris@82 516 static void transpose_toms513(R *a, INT nx, INT ny, INT N,
Chris@82 517 char *move, INT move_size, R *buf)
Chris@82 518 {
Chris@82 519 INT i, im, mn;
Chris@82 520 R *b, *c, *d;
Chris@82 521 INT ncount;
Chris@82 522 INT k;
Chris@82 523
Chris@82 524 /* check arguments and initialize: */
Chris@82 525 A(ny > 0 && nx > 0 && N > 0 && move_size > 0);
Chris@82 526
Chris@82 527 b = buf;
Chris@82 528
Chris@82 529 /* Cate & Twigg have a special case for nx == ny, but we don't
Chris@82 530 bother, since we already have special code for this case elsewhere. */
Chris@82 531
Chris@82 532 c = buf + N;
Chris@82 533 ncount = 2; /* always at least 2 fixed points */
Chris@82 534 k = (mn = ny * nx) - 1;
Chris@82 535
Chris@82 536 for (i = 0; i < move_size; ++i)
Chris@82 537 move[i] = 0;
Chris@82 538
Chris@82 539 if (ny >= 3 && nx >= 3)
Chris@82 540 ncount += gcd(ny - 1, nx - 1) - 1; /* # fixed points */
Chris@82 541
Chris@82 542 i = 1;
Chris@82 543 im = ny;
Chris@82 544
Chris@82 545 while (1) {
Chris@82 546 INT i1, i2, i1c, i2c;
Chris@82 547 INT kmi;
Chris@82 548
Chris@82 549 /** Rearrange the elements of a loop
Chris@82 550 and its companion loop: **/
Chris@82 551
Chris@82 552 i1 = i;
Chris@82 553 kmi = k - i;
Chris@82 554 i1c = kmi;
Chris@82 555 switch (N) {
Chris@82 556 case 1:
Chris@82 557 b[0] = a[i1];
Chris@82 558 c[0] = a[i1c];
Chris@82 559 break;
Chris@82 560 case 2:
Chris@82 561 b[0] = a[2*i1];
Chris@82 562 b[1] = a[2*i1+1];
Chris@82 563 c[0] = a[2*i1c];
Chris@82 564 c[1] = a[2*i1c+1];
Chris@82 565 break;
Chris@82 566 default:
Chris@82 567 memcpy(b, &a[N * i1], N * sizeof(R));
Chris@82 568 memcpy(c, &a[N * i1c], N * sizeof(R));
Chris@82 569 }
Chris@82 570 while (1) {
Chris@82 571 i2 = ny * i1 - k * (i1 / nx);
Chris@82 572 i2c = k - i2;
Chris@82 573 if (i1 < move_size)
Chris@82 574 move[i1] = 1;
Chris@82 575 if (i1c < move_size)
Chris@82 576 move[i1c] = 1;
Chris@82 577 ncount += 2;
Chris@82 578 if (i2 == i)
Chris@82 579 break;
Chris@82 580 if (i2 == kmi) {
Chris@82 581 d = b;
Chris@82 582 b = c;
Chris@82 583 c = d;
Chris@82 584 break;
Chris@82 585 }
Chris@82 586 switch (N) {
Chris@82 587 case 1:
Chris@82 588 a[i1] = a[i2];
Chris@82 589 a[i1c] = a[i2c];
Chris@82 590 break;
Chris@82 591 case 2:
Chris@82 592 a[2*i1] = a[2*i2];
Chris@82 593 a[2*i1+1] = a[2*i2+1];
Chris@82 594 a[2*i1c] = a[2*i2c];
Chris@82 595 a[2*i1c+1] = a[2*i2c+1];
Chris@82 596 break;
Chris@82 597 default:
Chris@82 598 memcpy(&a[N * i1], &a[N * i2],
Chris@82 599 N * sizeof(R));
Chris@82 600 memcpy(&a[N * i1c], &a[N * i2c],
Chris@82 601 N * sizeof(R));
Chris@82 602 }
Chris@82 603 i1 = i2;
Chris@82 604 i1c = i2c;
Chris@82 605 }
Chris@82 606 switch (N) {
Chris@82 607 case 1:
Chris@82 608 a[i1] = b[0];
Chris@82 609 a[i1c] = c[0];
Chris@82 610 break;
Chris@82 611 case 2:
Chris@82 612 a[2*i1] = b[0];
Chris@82 613 a[2*i1+1] = b[1];
Chris@82 614 a[2*i1c] = c[0];
Chris@82 615 a[2*i1c+1] = c[1];
Chris@82 616 break;
Chris@82 617 default:
Chris@82 618 memcpy(&a[N * i1], b, N * sizeof(R));
Chris@82 619 memcpy(&a[N * i1c], c, N * sizeof(R));
Chris@82 620 }
Chris@82 621 if (ncount >= mn)
Chris@82 622 break; /* we've moved all elements */
Chris@82 623
Chris@82 624 /** Search for loops to rearrange: **/
Chris@82 625
Chris@82 626 while (1) {
Chris@82 627 INT max = k - i;
Chris@82 628 ++i;
Chris@82 629 A(i <= max);
Chris@82 630 im += ny;
Chris@82 631 if (im > k)
Chris@82 632 im -= k;
Chris@82 633 i2 = im;
Chris@82 634 if (i == i2)
Chris@82 635 continue;
Chris@82 636 if (i >= move_size) {
Chris@82 637 while (i2 > i && i2 < max) {
Chris@82 638 i1 = i2;
Chris@82 639 i2 = ny * i1 - k * (i1 / nx);
Chris@82 640 }
Chris@82 641 if (i2 == i)
Chris@82 642 break;
Chris@82 643 } else if (!move[i])
Chris@82 644 break;
Chris@82 645 }
Chris@82 646 }
Chris@82 647 }
Chris@82 648
Chris@82 649 static void apply_toms513(const plan *ego_, R *I, R *O)
Chris@82 650 {
Chris@82 651 const P *ego = (const P *) ego_;
Chris@82 652 INT n = ego->n, m = ego->m;
Chris@82 653 INT vl = ego->vl;
Chris@82 654 R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
Chris@82 655 UNUSED(O);
Chris@82 656 transpose_toms513(I, n, m, vl, (char *) (buf + 2*vl), (n+m)/2, buf);
Chris@82 657 X(ifree)(buf);
Chris@82 658 }
Chris@82 659
Chris@82 660 static int applicable_toms513(const problem_rdft *p, planner *plnr,
Chris@82 661 int dim0, int dim1, int dim2, INT *nbuf)
Chris@82 662 {
Chris@82 663 INT n = p->vecsz->dims[dim0].n;
Chris@82 664 INT m = p->vecsz->dims[dim1].n;
Chris@82 665 INT vl, vs;
Chris@82 666 get_transpose_vec(p, dim2, &vl, &vs);
Chris@82 667 *nbuf = 2*vl
Chris@82 668 + ((n + m) / 2 * sizeof(char) + sizeof(R) - 1) / sizeof(R);
Chris@82 669 return (!NO_SLOWP(plnr)
Chris@82 670 && (vl > 8 || !NO_UGLYP(plnr)) /* UGLY for small vl */
Chris@82 671 && n != m
Chris@82 672 && Ntuple_transposable(p->vecsz->dims + dim0,
Chris@82 673 p->vecsz->dims + dim1,
Chris@82 674 vl, vs));
Chris@82 675 }
Chris@82 676
Chris@82 677 static int mkcldrn_toms513(const problem_rdft *p, planner *plnr, P *ego)
Chris@82 678 {
Chris@82 679 UNUSED(p); UNUSED(plnr);
Chris@82 680 /* heuristic so that TOMS algorithm is last resort for small vl */
Chris@82 681 ego->super.super.ops.other += ego->n * ego->m * 2 * (ego->vl + 30);
Chris@82 682 return 1;
Chris@82 683 }
Chris@82 684
Chris@82 685 static const transpose_adt adt_toms513 =
Chris@82 686 {
Chris@82 687 apply_toms513, applicable_toms513, mkcldrn_toms513,
Chris@82 688 "rdft-transpose-toms513"
Chris@82 689 };
Chris@82 690
Chris@82 691 /*-----------------------------------------------------------------------*/
Chris@82 692 /*-----------------------------------------------------------------------*/
Chris@82 693 /* generic stuff: */
Chris@82 694
Chris@82 695 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@82 696 {
Chris@82 697 P *ego = (P *) ego_;
Chris@82 698 X(plan_awake)(ego->cld1, wakefulness);
Chris@82 699 X(plan_awake)(ego->cld2, wakefulness);
Chris@82 700 X(plan_awake)(ego->cld3, wakefulness);
Chris@82 701 }
Chris@82 702
Chris@82 703 static void print(const plan *ego_, printer *p)
Chris@82 704 {
Chris@82 705 const P *ego = (const P *) ego_;
Chris@82 706 p->print(p, "(%s-%Dx%D%v", ego->slv->adt->nam,
Chris@82 707 ego->n, ego->m, ego->vl);
Chris@82 708 if (ego->cld1) p->print(p, "%(%p%)", ego->cld1);
Chris@82 709 if (ego->cld2) p->print(p, "%(%p%)", ego->cld2);
Chris@82 710 if (ego->cld3) p->print(p, "%(%p%)", ego->cld3);
Chris@82 711 p->print(p, ")");
Chris@82 712 }
Chris@82 713
Chris@82 714 static void destroy(plan *ego_)
Chris@82 715 {
Chris@82 716 P *ego = (P *) ego_;
Chris@82 717 X(plan_destroy_internal)(ego->cld3);
Chris@82 718 X(plan_destroy_internal)(ego->cld2);
Chris@82 719 X(plan_destroy_internal)(ego->cld1);
Chris@82 720 }
Chris@82 721
Chris@82 722 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@82 723 {
Chris@82 724 const S *ego = (const S *) ego_;
Chris@82 725 const problem_rdft *p;
Chris@82 726 int dim0, dim1, dim2;
Chris@82 727 INT nbuf, vs;
Chris@82 728 P *pln;
Chris@82 729
Chris@82 730 static const plan_adt padt = {
Chris@82 731 X(rdft_solve), awake, print, destroy
Chris@82 732 };
Chris@82 733
Chris@82 734 if (!applicable(ego_, p_, plnr, &dim0, &dim1, &dim2, &nbuf))
Chris@82 735 return (plan *) 0;
Chris@82 736
Chris@82 737 p = (const problem_rdft *) p_;
Chris@82 738 pln = MKPLAN_RDFT(P, &padt, ego->adt->apply);
Chris@82 739
Chris@82 740 pln->n = p->vecsz->dims[dim0].n;
Chris@82 741 pln->m = p->vecsz->dims[dim1].n;
Chris@82 742 get_transpose_vec(p, dim2, &pln->vl, &vs);
Chris@82 743 pln->nbuf = nbuf;
Chris@82 744 pln->d = gcd(pln->n, pln->m);
Chris@82 745 pln->nd = pln->n / pln->d;
Chris@82 746 pln->md = pln->m / pln->d;
Chris@82 747 pln->slv = ego;
Chris@82 748
Chris@82 749 X(ops_zero)(&pln->super.super.ops); /* mkcldrn is responsible for ops */
Chris@82 750
Chris@82 751 pln->cld1 = pln->cld2 = pln->cld3 = 0;
Chris@82 752 if (!ego->adt->mkcldrn(p, plnr, pln)) {
Chris@82 753 X(plan_destroy_internal)(&(pln->super.super));
Chris@82 754 return 0;
Chris@82 755 }
Chris@82 756
Chris@82 757 return &(pln->super.super);
Chris@82 758 }
Chris@82 759
Chris@82 760 static solver *mksolver(const transpose_adt *adt)
Chris@82 761 {
Chris@82 762 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@82 763 S *slv = MKSOLVER(S, &sadt);
Chris@82 764 slv->adt = adt;
Chris@82 765 return &(slv->super);
Chris@82 766 }
Chris@82 767
Chris@82 768 void X(rdft_vrank3_transpose_register)(planner *p)
Chris@82 769 {
Chris@82 770 unsigned i;
Chris@82 771 static const transpose_adt *const adts[] = {
Chris@82 772 &adt_gcd, &adt_cut,
Chris@82 773 &adt_toms513
Chris@82 774 };
Chris@82 775 for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
Chris@82 776 REGISTER_SOLVER(p, mksolver(adts[i]));
Chris@82 777 }