annotate src/fftw-3.3.8/rdft/simd/common/hc2cfdftv_6.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include rdft/simd/hc2cfv.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 29 FP additions, 30 FP multiplications,
Chris@82 32 * (or, 17 additions, 18 multiplications, 12 fused multiply/add),
Chris@82 33 * 38 stack variables, 2 constants, and 12 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/simd/hc2cfv.h"
Chris@82 36
Chris@82 37 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 41 {
Chris@82 42 INT m;
Chris@82 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@82 44 V T8, Tr, Tf, Tk, Tl, Ts, Tt, Tu, T3, Tj, Te, Th, T7, Ta, T1;
Chris@82 45 V T2, Ti, Tc, Td, Tb, Tg, T5, T6, T4, T9, Tm, Tv, Tp, Tq, Tn;
Chris@82 46 V To, Ty, Tz, Tw, Tx;
Chris@82 47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@82 48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@82 49 T3 = VFMACONJ(T2, T1);
Chris@82 50 Ti = LDW(&(W[0]));
Chris@82 51 Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1));
Chris@82 52 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@82 53 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@82 54 Tb = LDW(&(W[TWVL * 8]));
Chris@82 55 Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc));
Chris@82 56 Tg = LDW(&(W[TWVL * 6]));
Chris@82 57 Th = VZMULJ(Tg, VFMACONJ(Td, Tc));
Chris@82 58 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 59 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 60 T4 = LDW(&(W[TWVL * 4]));
Chris@82 61 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
Chris@82 62 T9 = LDW(&(W[TWVL * 2]));
Chris@82 63 Ta = VZMULJ(T9, VFMACONJ(T6, T5));
Chris@82 64 T8 = VSUB(T3, T7);
Chris@82 65 Tr = VADD(T3, T7);
Chris@82 66 Tf = VSUB(Ta, Te);
Chris@82 67 Tk = VSUB(Th, Tj);
Chris@82 68 Tl = VADD(Tf, Tk);
Chris@82 69 Ts = VADD(Ta, Te);
Chris@82 70 Tt = VADD(Tj, Th);
Chris@82 71 Tu = VADD(Ts, Tt);
Chris@82 72 Tm = VMUL(LDK(KP500000000), VADD(T8, Tl));
Chris@82 73 ST(&(Rp[0]), Tm, ms, &(Rp[0]));
Chris@82 74 Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu)));
Chris@82 75 ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0]));
Chris@82 76 Tn = VFNMS(LDK(KP500000000), Tl, T8);
Chris@82 77 To = VMUL(LDK(KP866025403), VSUB(Tk, Tf));
Chris@82 78 Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn));
Chris@82 79 Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn)));
Chris@82 80 ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0]));
Chris@82 81 ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)]));
Chris@82 82 Tw = VFNMS(LDK(KP500000000), Tu, Tr);
Chris@82 83 Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts));
Chris@82 84 Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw)));
Chris@82 85 Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw));
Chris@82 86 ST(&(Rm[0]), Ty, -ms, &(Rm[0]));
Chris@82 87 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
Chris@82 88 }
Chris@82 89 }
Chris@82 90 VLEAVE();
Chris@82 91 }
Chris@82 92
Chris@82 93 static const tw_instr twinstr[] = {
Chris@82 94 VTW(1, 1),
Chris@82 95 VTW(1, 2),
Chris@82 96 VTW(1, 3),
Chris@82 97 VTW(1, 4),
Chris@82 98 VTW(1, 5),
Chris@82 99 {TW_NEXT, VL, 0}
Chris@82 100 };
Chris@82 101
Chris@82 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {17, 18, 12, 0} };
Chris@82 103
Chris@82 104 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
Chris@82 105 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
Chris@82 106 }
Chris@82 107 #else
Chris@82 108
Chris@82 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include rdft/simd/hc2cfv.h */
Chris@82 110
Chris@82 111 /*
Chris@82 112 * This function contains 29 FP additions, 20 FP multiplications,
Chris@82 113 * (or, 27 additions, 18 multiplications, 2 fused multiply/add),
Chris@82 114 * 42 stack variables, 3 constants, and 12 memory accesses
Chris@82 115 */
Chris@82 116 #include "rdft/simd/hc2cfv.h"
Chris@82 117
Chris@82 118 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 119 {
Chris@82 120 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 122 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 123 {
Chris@82 124 INT m;
Chris@82 125 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@82 126 V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2;
Chris@82 127 V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To;
Chris@82 128 V Tt, Ts, TA, Ty, Tz, Tx, TC, TB;
Chris@82 129 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@82 130 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 131 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@82 132 Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@82 133 Tf = VCONJ(Te);
Chris@82 134 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 135 T7 = VCONJ(T6);
Chris@82 136 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@82 137 T3 = VCONJ(T2);
Chris@82 138 T4 = VADD(T1, T3);
Chris@82 139 T5 = LDW(&(W[TWVL * 4]));
Chris@82 140 T9 = VZMULIJ(T5, VSUB(T7, T8));
Chris@82 141 Ta = VADD(T4, T9);
Chris@82 142 Tu = VSUB(T4, T9);
Chris@82 143 Tj = LDW(&(W[0]));
Chris@82 144 Tk = VZMULIJ(Tj, VSUB(T3, T1));
Chris@82 145 Tl = LDW(&(W[TWVL * 6]));
Chris@82 146 Tm = VZMULJ(Tl, VADD(Tf, Tg));
Chris@82 147 Tn = VADD(Tk, Tm);
Chris@82 148 Tw = VSUB(Tm, Tk);
Chris@82 149 Tb = LDW(&(W[TWVL * 2]));
Chris@82 150 Tc = VZMULJ(Tb, VADD(T7, T8));
Chris@82 151 Td = LDW(&(W[TWVL * 8]));
Chris@82 152 Th = VZMULIJ(Td, VSUB(Tf, Tg));
Chris@82 153 Ti = VADD(Tc, Th);
Chris@82 154 Tv = VSUB(Tc, Th);
Chris@82 155 Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti))));
Chris@82 156 To = VADD(Ti, Tn);
Chris@82 157 Tp = VMUL(LDK(KP500000000), VADD(Ta, To));
Chris@82 158 Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta));
Chris@82 159 ST(&(Rp[0]), Tp, ms, &(Rp[0]));
Chris@82 160 Tt = VCONJ(VADD(Tq, Tr));
Chris@82 161 ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)]));
Chris@82 162 Ts = VSUB(Tq, Tr);
Chris@82 163 ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0]));
Chris@82 164 TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv))));
Chris@82 165 Tx = VADD(Tv, Tw);
Chris@82 166 Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx)));
Chris@82 167 Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu));
Chris@82 168 ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0]));
Chris@82 169 TC = VADD(Tz, TA);
Chris@82 170 ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)]));
Chris@82 171 TB = VCONJ(VSUB(Tz, TA));
Chris@82 172 ST(&(Rm[0]), TB, -ms, &(Rm[0]));
Chris@82 173 }
Chris@82 174 }
Chris@82 175 VLEAVE();
Chris@82 176 }
Chris@82 177
Chris@82 178 static const tw_instr twinstr[] = {
Chris@82 179 VTW(1, 1),
Chris@82 180 VTW(1, 2),
Chris@82 181 VTW(1, 3),
Chris@82 182 VTW(1, 4),
Chris@82 183 VTW(1, 5),
Chris@82 184 {TW_NEXT, VL, 0}
Chris@82 185 };
Chris@82 186
Chris@82 187 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {27, 18, 2, 0} };
Chris@82 188
Chris@82 189 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
Chris@82 190 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
Chris@82 191 }
Chris@82 192 #endif