annotate src/fftw-3.3.8/rdft/simd/common/hc2cfdftv_4.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include rdft/simd/hc2cfv.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 15 FP additions, 16 FP multiplications,
Chris@82 32 * (or, 9 additions, 10 multiplications, 6 fused multiply/add),
Chris@82 33 * 21 stack variables, 1 constants, and 8 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/simd/hc2cfv.h"
Chris@82 36
Chris@82 37 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 40 {
Chris@82 41 INT m;
Chris@82 42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@82 43 V T8, Th, Td, Tg, T3, Tc, T7, Ta, T1, T2, Tb, T5, T6, T4, T9;
Chris@82 44 V Te, Tj, Tf, Ti;
Chris@82 45 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@82 46 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@82 47 T3 = VFMACONJ(T2, T1);
Chris@82 48 Tb = LDW(&(W[0]));
Chris@82 49 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
Chris@82 50 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 51 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 52 T4 = LDW(&(W[TWVL * 2]));
Chris@82 53 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
Chris@82 54 T9 = LDW(&(W[TWVL * 4]));
Chris@82 55 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
Chris@82 56 T8 = VSUB(T3, T7);
Chris@82 57 Th = VADD(Tc, Ta);
Chris@82 58 Td = VSUB(Ta, Tc);
Chris@82 59 Tg = VADD(T3, T7);
Chris@82 60 Te = VMUL(LDK(KP500000000), VFNMSI(Td, T8));
Chris@82 61 ST(&(Rp[WS(rs, 1)]), Te, ms, &(Rp[WS(rs, 1)]));
Chris@82 62 Tj = VCONJ(VMUL(LDK(KP500000000), VADD(Th, Tg)));
Chris@82 63 ST(&(Rm[WS(rs, 1)]), Tj, -ms, &(Rm[WS(rs, 1)]));
Chris@82 64 Tf = VCONJ(VMUL(LDK(KP500000000), VFMAI(Td, T8)));
Chris@82 65 ST(&(Rm[0]), Tf, -ms, &(Rm[0]));
Chris@82 66 Ti = VMUL(LDK(KP500000000), VSUB(Tg, Th));
Chris@82 67 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
Chris@82 68 }
Chris@82 69 }
Chris@82 70 VLEAVE();
Chris@82 71 }
Chris@82 72
Chris@82 73 static const tw_instr twinstr[] = {
Chris@82 74 VTW(1, 1),
Chris@82 75 VTW(1, 2),
Chris@82 76 VTW(1, 3),
Chris@82 77 {TW_NEXT, VL, 0}
Chris@82 78 };
Chris@82 79
Chris@82 80 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {9, 10, 6, 0} };
Chris@82 81
Chris@82 82 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
Chris@82 83 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
Chris@82 84 }
Chris@82 85 #else
Chris@82 86
Chris@82 87 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include rdft/simd/hc2cfv.h */
Chris@82 88
Chris@82 89 /*
Chris@82 90 * This function contains 15 FP additions, 10 FP multiplications,
Chris@82 91 * (or, 15 additions, 10 multiplications, 0 fused multiply/add),
Chris@82 92 * 23 stack variables, 1 constants, and 8 memory accesses
Chris@82 93 */
Chris@82 94 #include "rdft/simd/hc2cfv.h"
Chris@82 95
Chris@82 96 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 97 {
Chris@82 98 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 99 {
Chris@82 100 INT m;
Chris@82 101 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@82 102 V T4, Tc, T9, Te, T1, T3, T2, Tb, T6, T8, T7, T5, Td, Tg, Th;
Chris@82 103 V Ta, Tf, Tk, Tl, Ti, Tj;
Chris@82 104 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@82 105 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@82 106 T3 = VCONJ(T2);
Chris@82 107 T4 = VADD(T1, T3);
Chris@82 108 Tb = LDW(&(W[0]));
Chris@82 109 Tc = VZMULIJ(Tb, VSUB(T3, T1));
Chris@82 110 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 111 T7 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 112 T8 = VCONJ(T7);
Chris@82 113 T5 = LDW(&(W[TWVL * 2]));
Chris@82 114 T9 = VZMULJ(T5, VADD(T6, T8));
Chris@82 115 Td = LDW(&(W[TWVL * 4]));
Chris@82 116 Te = VZMULIJ(Td, VSUB(T8, T6));
Chris@82 117 Ta = VSUB(T4, T9);
Chris@82 118 Tf = VBYI(VSUB(Tc, Te));
Chris@82 119 Tg = VMUL(LDK(KP500000000), VSUB(Ta, Tf));
Chris@82 120 Th = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, Tf)));
Chris@82 121 ST(&(Rp[WS(rs, 1)]), Tg, ms, &(Rp[WS(rs, 1)]));
Chris@82 122 ST(&(Rm[0]), Th, -ms, &(Rm[0]));
Chris@82 123 Ti = VADD(T4, T9);
Chris@82 124 Tj = VADD(Tc, Te);
Chris@82 125 Tk = VCONJ(VMUL(LDK(KP500000000), VSUB(Ti, Tj)));
Chris@82 126 Tl = VMUL(LDK(KP500000000), VADD(Ti, Tj));
Chris@82 127 ST(&(Rm[WS(rs, 1)]), Tk, -ms, &(Rm[WS(rs, 1)]));
Chris@82 128 ST(&(Rp[0]), Tl, ms, &(Rp[0]));
Chris@82 129 }
Chris@82 130 }
Chris@82 131 VLEAVE();
Chris@82 132 }
Chris@82 133
Chris@82 134 static const tw_instr twinstr[] = {
Chris@82 135 VTW(1, 1),
Chris@82 136 VTW(1, 2),
Chris@82 137 VTW(1, 3),
Chris@82 138 {TW_NEXT, VL, 0}
Chris@82 139 };
Chris@82 140
Chris@82 141 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {15, 10, 0, 0} };
Chris@82 142
Chris@82 143 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
Chris@82 144 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
Chris@82 145 }
Chris@82 146 #endif